Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two-dimensional finite element model of the grain boundary based on thermo-mechanical strain gradient plasticity

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this work, a two-dimensional finite element model for the grain boundary flow rule is developed based on the thermo-mechanical gradient-enhanced plasticity theory. The proposed model is temperature-dependent. A special attention is given to physical and micromechanical nature of dislocation interactions in combination with thermal activation on stored and dissipated energy. Thermodynamic conjugate microforces are decomposed into energetic and dissipative components. Correspondingly, two different grain boundary material length scales are present in the proposed model. Finally, numerical examples are solved in order to explore characteristics of the proposed grain boundary flow rule.
Opis fizyczny
Bibliogr. 20 poz., rys.
  • Louisiana State University, Department of Civil and Environmental Engineering, Baton Rouge, LA, USA
  • Louisiana State University, Department of Civil and Environmental Engineering, Baton Rouge, LA, USA
  • 1. ABAQUS, 2012, User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence, RI, USA
  • 2. Aifantis K.E., Willis J.R., 2005, The role of interfaces in enhancing the yield strength of composites and polycrystals, Journal of the Mechanics and Physics of Solids, 53, 5, 1047-1070
  • 3. Cermelli P., Gurtin M.E., 2002, Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations, International Journal of Solids and Structures, 39, 26, 6281-6309
  • 4. Clark W.A.T., Wagoner R.H., Shen Z.Y., Lee T.C., Robertson I.M., Birnbaum H.K., 1992, On the criteria for slip transmission across interfaces in polycrystals, Scripta Metallurgica et Materialia, 26, 2, 203-206
  • 5. Coleman B.D., Noll W., 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis, 13, 3, 167-178
  • 6. Forest S., 2009, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, Journal of Engineering Mechanics – ASCE, 135, 3, 117-131
  • 7. Fredriksson P., Gudmundson P., 2007, Competition between interface and bulk dominated plastic deformation in strain gradient plasticity, Modelling and Simulation in Materials Science and Engineering, 15, 1, S61-S69
  • 8. Gudmundson P., 2004, A unified treatment of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 52, 6, 1379-1406
  • 9. Gurtin M.E., 2008, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, Journal of the Mechanics and Physics of Solids, 56, 2, 640-662
  • 10. Hirth J.P., Lothe J., 1982, Theory of Dislocations, Elsevier
  • 11. Lee T.C., Robertson I.M., Birnbaum H.K., 1989, Prediction of slip transfer mechanisms across grain-boundaries, Scripta Metallurgica, 23, 5, 799-803
  • 12. Nix W.D., Gao H.J., 1998, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 46, 3, 411-425
  • 13. Ohmura T., Minor A.M., Stach E.A., Morris J.W., 2004, Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope, Journal of Materials Research, 19, 12, 3626-3632
  • 14. Soer W.A., Aifantis K.E., De Hosson J.T.M., 2005, Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals, Acta Materialia, 53, 17, 4665-4676
  • 15. Song Y., Voyiadjis G.Z., 2018, Small scale volume formulation based on coupled thermo-mechanical gradient enhanced plasticity theory, International Journal of Solids and Structures, 134, March 2018, 195-215
  • 16. Sun S., Adams B.L., King W.E., 2000, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 80, 1, 9-25
  • 17. Voce E., 1955, A practical strain-hardening function, Metallurgica, 51219-51226
  • 18. Voyiadjis G.Z., Faghihi D., Zhang Y.D., 2014, A theory for grain boundaries with strain-gradient plasticity, International Journal of Solids and Structures, 51, 10, 1872-1889
  • 19. Voyiadjis G.Z., Song Y., 2017, Effect of passivation on higher order gradient plasticity models for non-proportional loading: energetic and dissipative gradient components, Philosophical Magazine, 97, 5, 318-345
  • 20. Voyiadjis G.Z., Song Y., Park T., 2017, Higher-order thermomechanical gradient plasticity model with energetic and dissipative components, Journal of Engineering Materials and Technology – Transactions of the ASME, 139, 2
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.