PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cadmium exposure of heavy metal-tolerant Mesembryanthemum crystallinum L. (the common ice plant) stimulates gas exchange

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ekspozycja na kadm rośliny tolerującej metale ciężkie Mesembryanthemum crystallinum L. (Przypołudnik kryształkowy) stymuluje wymianę gazową
Języki publikacji
EN
Abstrakty
EN
When exposed to high cadmium concentrations applied to the soil, the abiotic stress-tolerant, semihalophytic C3 /CAM (Crassulacean Acid Metabolism) photosynthetic intermediate plant Mesembryanthemum crystallinum L. demonstrates negligible poisoning symptoms with well-protected photochemical activity. Gas exchange analysis of the soil-grown plants exposed to Cd concentrations ranging from 0.01 to 10.0 mM revealed stimulation of net photosynthesis in the C3 metabolic state, and this observation coincided with an increase in the transpiration level. The obtained results suggest that the initial action of Cd after the administration of this heavy metal is the stimulation of stomata opening.
PL
Przypołudnik kryształkowy (Mesembryanthemum crystallinum L.) to semihalofit o metabolizmie przejściowym C3 /CAM, cechujący się dużą odpornością na stres abiotyczny, w tym na obecność wysokich stężeń kadmu w podłożu. W przeprowadzonych eksperymentach, przy stężeniach 0.01, 0.1, 1.0 oraz 10.0 mM soli kadmu aplikowanej do gleby stwierdzono znikome uszkodzenia tkanek liściowych zarówno u roślin realizujących fotosyntezę typu C3 , jak i CAM. U roślin typu C3 po ekspozycji na kadm zaobserwowano stymulację fotosyntezy netto (PN), który to proces zachodził równolegle ze zwiększeniem intensywności transpiracji. Zaobserwowany wzrost intensywności transpiracji w ciemności wskazuje na stymulację otwarcia aparatów szparkowych pod wpływem działania Cd. Udokumentowano brak istotnych zmian w aktywności fotochemicznej u obu grup roślin w odpowiedzi na traktowanie roztworem kadmu, co wskazuje na obecność dodatkowych mechanizmów chroniących aparat fotochemiczny, a uruchamianych w celu zapobiegania pojawianiu się toksycznych efektów tego metalu
Rocznik
Strony
21--26
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
  • Institute of Biology, University of the National Education Comission Kraków, Poland
  • Department of Plant Biology and Biotechnology, University of Agriculture in Kraków
  • Department of Plant Biology and Biotechnology, University of Agriculture in Kraków
  • W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
Bibliografia
  • [1]. Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J. & Griffiths, H. (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). The New Phytologist, 138, 171–190. DOI:10.1046/j.1469-8137.1998.00111.x
  • [2]. Adamakis, I.-D.S., Sperdouli, I., Hanć, A., Dobrikova, A., Apostolova, E. & Moustakas, M. (2021). Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. International Journal of Molecular Sciences, 22, 41. DOI:10.3390/ijms22010041
  • [3]. Ali, H., Khan, E. & Sajad, M.A. (2013) Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881. DOI:10.1016/j.chemosphere.2013.01.075
  • [4]. Amari, T., Ghnaya, T., Debez, A., Taamali, M., Ben Youssef, N., Lucchini, G., Sacchi, G.A. & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171, 1634–1644. DOI:10.1016/j.jplph.2014.06.020
  • [5]. Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M. & Irshad, M.K. (2015). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-546. DOI:10.1080/03650340.2015.1064903
  • [6]. Björkman, O. & Demming, B. (1987). Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77ºK among vascular plants of diverse origin. Planta, 170, 489–504. DOI:10.1007/BF00402983
  • [7]. Carvalho, M.E.A., Piotto, F.A., Franco, M.R., Rossi, M.L., Martinelli, A.P., Cuypers, A. & Azevedo R.A. (2019). Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. Journal of Environmental Management, 240, 84-92. DOI:10.1016/j.jenvman.2019.03.026
  • [8]. Chibuike, G.U. & Obiora, S.C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 1-13. DOI:10.1155/2014/752708
  • [9]. Cushman, J.C. & Borland, A.M. (2002). Induction of crassulacean acid metabolism by water limitation. Plant Cell & Environment, 25(2), 295-310. DOI:10.1046/j.0016-8025.2001.00760.x
  • [10]. Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B. & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35, 1281-1289. DOI:10.1007/s11738-012-1167-8
  • [11]. Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Groppa, M.D. & Benavides, M.P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46. DOI:10.1016/j.envexpbot.2012.04.006
  • [12]. Gawrońska, K. & Niewiadomska, E. (2015). Participation of citric acid and isocitric acid in the diurnal cycle of carboxylation and decarboxylation in the common ice plant. Acta Physiologiae Plantarum, 37, 61. DOI:10.1007/s11738-015-1807-x
  • [13]. Gawroński S., Łutczyk G., Szulc W. & Rutkowska B. (2022) Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection 48(2),24-33 DOI:10.24425/aep.2022.140763
  • [14]. Haag-Kerwer, A., Schäfer, H.J., Heiss, S., Walter, C. & Rausch, T. (1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50, 1827–1835. DOI:10.1093/jxb/50.341.1827
  • [15]. Jia, L., Liu, Z., Chen, W., Ye, Y., Yu, S. & He, X. (2015). Hormesis effects induced by cadmium on growth and photosynthetic performance in hyperaccumulator Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34, 13-21. DOI:10.1007/s00344-014-9433-1
  • [16]. Kholodova, V., Volkov, K. & Kuznetsov, V. (2005). Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russian Journal of Plant Physiology, 52, 748–757. DOI:10.1007/s11183-005-0111-9
  • [17]. Larsson, F.H., Bornman, J.F. & Asp, H. (1998). Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany, 49, 1031-1039. DOI:10.1093/jxb/49.323.1031
  • [18]. Liang, L., Liu,W., Sun, Y., Huo, X., Li, S. & Zhou, Q. (2017) Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environmental Reviews, 25, 269–281. DOI:10.1139/er-2016-0063
  • [19]. Lösch, R. & Köhl, K.I. (1999). Plant respiration under influence of heavy metals, [In:] Prasad, M.N.V. & Hagemeyer, J. (Eds): Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg, 139-156.
  • [20]. Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, 104-114. DOI:10.1515/aep-2015-0045
  • [21]. Moradi, L. & Ehsanzadeh, P. (2015). Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica, 53(4), 506-518. DOI:10.1007/s11099-015-0150-1
  • [22]. Moustakas, M., Moustakas, J. & Sperdouli I. (2022). Hormesis in photosystem II: a mechanistic understanding. Current Opinion in Toxicology, 29, 57-64. DOI:10.1016/j.cotox.2022.02.003[
  • [23]. Nosek, M., Kaczmarczyk, A., Śliwa, M., Jędrzejczyk, R., Kornaś, A., Supel, P., Kaszycki, P. & Miszalski, Z. (2019). The response of a model C3/CAM intermediate semi-halophyte Mesembryanthemum crystallinum L. to elevated cadmium concentrations. Journal of Plant Physiology, 240, 153005. DOI:10.1016/j.jplph.2019.153005
  • [24]. Nosek, M., Kaczmarczyk, A., Jędrzejczyk, R.J., Supel, P., Kaszycki, P. & Miszalski, Z. (2020). Expression of genes involved in heavy metal trafficking in plants exposed to salinity stress and elevated Cd concentrations. Plants, 9, 475. DOI:10.3390/plants9040475
  • [25]. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M. & Strzałka, K. (2001). Physiological responses of Lemma trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 161, 881-889. DOI:10.1016/S0168-9452(01)00478-2
  • [26]. Śliwa-Cebula, M., Kaszycki, P., Kaczmarczyk, A., Nosek, M., Lis-Krzyścin, A. & Miszalski, Z. (2020). The common ice plant (Mesembryanthemum crystallinum L.) – phytoremediation potential for cadmium and chromate-contaminated soils. Plants, 9, 1230. DOI:10.3390/plants9091230
  • [27]. Śliwa-Cebula, M., Koniarz, T., Szara-Bąk, M., Baran A., Miszalski Z. & Kaszycki, P. (2023). Phytoremediation of metal-contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. Journal of Soils and Sediments, 23, 1065-1082. DOI:10.1007/s11368-022-03401-x
  • [28]. Tokarz, K., Piwowarczyk, B., Wysocka, A., Wójtowicz, T., Makowski, W. & Golemiec, E. (2019). Response of grass pea (Lathyrus sativus L.) photosynthetic apparatus to short-term intensive UV-A: red radiation. Acta Physiologiae Plantarum, 41, 168. DOI:10.1007/s11738-019-2962-2
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6002c156-e26d-451b-aaff-b51d51b48e51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.