PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic Analysis of Aluminium Evaporation from the Ti-6Al-7Nb Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza kinetyczna procesu parowania aluminium ze stopu Ti-6Al-7Nb
Języki publikacji
EN
Abstrakty
EN
In the present paper, kinetics of aluminium evaporation from the Ti-6Al-7Nb alloy during smelting by means of the VIM method at 5 to 1000 Pa has been discussed. To determine the liquid titanium meniscus area and the liquid titanium mean velocity for the experimental conditions of the study, a methodology based on the coupled model of the electromagnetic field and the hydrodynamic field of liquid metal was applied.
PL
W prezentowanej pracy omówiono kinetykę procesu odparowania aluminium ze stopu Ti-6Al.-7Nb wytapianego metodą VIM w zakresie ciśnień od 5 do 1000Pa. Do wyznaczenia powierzchni| menisku ciekłego tytanu oraz średniej prędkości ciekłego tytanu wykorzystano model matematyczny procesu topienia i nagrzewania ciekłego metalu w piecu indukcyjnym uwzględniający sprzężenie pola elektromagnetycznego i pola hydrodynamicznego ciekłego metalu.
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 40-019 Katowice, 8 Krasińskiego Str., Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 40-019 Katowice, 8 Krasińskiego Str., Poland
autor
  • University of Latvia, Laboratory for Mathematical Modelling of Environmental and Technical Processes, Lv-1002 Riga, Zellu Str. 8, Latvia
autor
  • University of Latvia, Laboratory for Mathematical Modelling of Environmental and Technical Processes, Lv-1002 Riga, Zellu Str. 8, Latvia
Bibliografia
  • [1] Y. Su, J. Guo, J. Jia, G. Liu, Y. Liu, Composition control ofa Ti-Al melt during the induction skull melting process, Journal of Alloys and Compounds 334, 261-266 (2002).
  • [2] G. Siwiec, Elimination of aluminum during the process of Ti-6Al-4Vmelting inavacuum induction furnace, Archives of Metallurgy and Materials 57 (4), 951-956 (2012).
  • [3] L. Blacha, G. Siwiec, B. Oleksiak, Loss of aluminium during the process of Ti-Al-Valloy smelting inavacuum induction melting (VIM) furnace, Metalurgija 52 (3), 301-304 (2013).
  • [4] G. Siwiec, The kinetics of aluminium evaporation from the Ti-6Al-4Valloy, Archives of Metallurgy and Materials 58 (4), 1155-1160 (2013).
  • [5] G. Siwiec, J. Mizera, D. Jama, A. Szmal, The effects of temperature on the kinetics of aluminium evaporation from the Ti-6Al-4Valloy, Metalurgija 53 (2), 225-227 (2014).
  • [6] L. Blacha, J. Mizera, P. Folega, The effects of mass transfer in the liquid phase on the rate of aluminium evaporation from the Ti-6Al-7Nb alloy, Metalurgija 53 (4), 51-54 (2014).
  • [7] L. Blacha, R. Burdzik, A. Smalcerz, T. Matuła, Effects of pressure on the kinetics of manganase evaporation from the OT 4 alloy, Archives of Metallurgy and Materials 58 (1), 197-201 (2013).
  • [8] J. Łabaj, Kinetics of coper evaporation from the Fe-Cu alloys under reduced pressure, Archives of Metallurgy and Materials 57 (1), 165-172 (2012).
  • [9] C. Kolmasiak, Kinetics of chromium evaporation from heat-resisting steel under reduced pressure, Metalurgija 51 (3), 317-320 (2012).
  • [10] L. Blacha, J. Łabaj, Factors determining the rate of process of metal bath components evaporation, Metalurgija 51 (4), 529-533 (2012).
  • [11] J. Guo, G. Liu, Y. Su, H. Ding, J. Jia, H. Fu, Evaporation of multi-components in Ti-25Al-25Nb melt during induction skull melting process, Transactions of Nonferrous Metals Society of China 12 (4), 587-591 (2002).
  • [12] S. Spitans, A. Jakovics, E. Baake, B. Nacke, Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace, Magnetohydrodynamics 46 (4), 425-436 (2010).
  • [13] S. Spitans, A. Jakovics, E. Baake, B. Nacke, Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field, Magnetohydrodynamics 47 (4), 385-397 (2011).
  • [14] S. Golak, R. Przyłucki, The optimization of an inductor position for minimization ofaliquid metal free surface, Przeglad Elektrotechniczny 84 (11), 163-164 (2008).
  • [15] S. Golak, R. Przyłucki, Asimulation of the coupled problem of magnetohydrodynamics andafree surface for liquid metals, Transactions WIT Transactions on Engineering Science 56, 67-76 (2009).
  • [16] R. Przyłucki, S. Golak, B. Oleksiak, L. Blacha, Influence of the geometry of the arrangement inductor-crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive, Archives of Civil and Mechanical Engineering 11 (1), 171-179 (2011).
  • [17] R. Przyłucki, Calculations of the induction heating system with the monitoring of thermal stress in the charge, Przeglad elektrotechniczny 84 (11), 210-214 (2008).
  • [18] T. Merder, Effect of casting flow rate on steel flow phenomena in tundish, Metalurgija 52 (2), 161-164 (2013).
  • [19] J. Barglik, D. Dolega, A. Smagor, Coupled temperature electromagnetic flow fields in the electromagnetic stirrer witharotating magnetic field, Magnetohydrodynamics 46 (4), 387-392 (2010).
  • [20] S. Semiatin, V. Ivanchenko, S. O. Akhonin, O. M. Ivasishin, Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys, Metallurgical and Materials Transactions B 35 B, 235-245 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ffeae12-6b47-4c41-84a8-2d2f2fd2fca4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.