PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of additional titanium diboride on characteristic of Ti-24Nb-4Zr-8Sn alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys have low density, superior resistance to corrosion, and high specific strength, also found extensive use in the aerospace, petrochemical, biomedical, and many other industries. Because metastable β-titanium alloys with b stabilizing elements like Nb and Zr provide a great mix of low modulus and high strength, they are particularly desirable as implant materials. Titanium diboride TiB2, is a very hard ceramic with superior wear resistance, oxidation stability, and heat conductivity. The purpose of this research is to estimate the influence of TiB2 at several percentages (0.1, 0.2, 0.3, and 0.4%wt.) on the Ti2448 alloy fabricated by powder metallurgy, macrostructures, and mechanical characteristics of powder-metallurgically produced Ti-24Nb-4Zr-8Sn-TiB2 composites. According to the experimental findings, the hardness rises as the percentage of TiB2 grows, reaching 166 HB at 0.4%wt. addition, while the wet wear rate falls as the TiB2 content increases, reaching 7.09×10-5g/cm.
Twórcy
  • College of Materials Engineering, University of Babylon, Iraq
  • College of Materials Engineering, University of Babylon, Iraq
  • College of Materials Engineering, University of Babylon, Iraq
Bibliografia
  • 1. Li H. F., Qiu K. J., Zhou F. Y., Li L., Zheng Y. F. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application, Scientific Reports 2016; 6: 37475.
  • 2. Bolzoni L., Ruiznavas E. M., Gordo E. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy, Materials Science & Engineering C Materials for Biological Applications 2015; 49(3): 400–407.
  • 3. Genchi G. et al. Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health 2020; 17(3): 679.
  • 4. Hamidi M. F. F. A., Harun W. S. W., Samykano M., Ghani S. A. C., Ghazalli Z., Ahmad F., Sulong A. B. A review of biocompatible metal injection moulding process parameters for biomedical applications, Materials Science & Engineering C 2017; 78: 1263–1276.
  • 5. Yilmazer H., Niinomi M., Nakai M., Cho K., Hieda J., Todaka Y., Miyazaki T. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion, Materials Science & Engineering C Materials for Biological Applications 2013; 33(5): 2499.
  • 6. Dorri S., et al. Oxidation kinetics of overstoichiometric TiB2 thin films grown by DC magnetron sputtering. Corrosion Science 2022; 206: 110493.
  • 7. Munro R. G. Material properties of titanium diboride. Journal of Research of the National Institute of Standards and Technology 2000; 105(5): 709.
  • 8. Xinghong Z., et al. Self-propagating high temperature combustion synthesis of TiB/Ti composites. Materials Science and Engineering 2003; 348(1–2): 41–46.
  • 9. Lv X., et al. Review on the development of titanium diboride ceramics. Recent Progress in Materials 2024; 6(2): 1–48.
  • 10. Yu B. V. Carbothermic synthesis of titanium diboride: upgrade. Journal of Siberian Federal University. Chemistry 2018; 11(2): 156–166.
  • 11. Krishnarao R. V., Subrahmanyam J. Studies on the formation of TiB₂ through carbothermal reduction of TiO₂ and B₂O₃, Materials Science and Engineering A 2003; 362(1–2): 145–151.
  • 12. Weimer A. W., ed. Carbide, nitride and boride materials synthesis and processing, Springer Science & Business Media, 2012.
  • 13. Hwang Y., Jong K. L. Preparation of TiB₂ powders by mechanical alloying, Materials Letters 2002; 54(1): 1–7.
  • 14. Ge C. L., Ye R. C. Research on self-propagating eutectic boriding, Journal of Materials Processing Technology 2002; 124(1–2): 14–18.
  • 15. Li X., et al. Low-temperature synthesis of high-purity TiB₂ via carbothermal reduction of metatitanic acid and H₃BO₃, Ceramics International 2023; 49(24): 40140–40148.
  • 16. Niinomi M., Nakai M., Yonezawa S., Song X., Wang L. Effect of TiB₂ or Y₂O₃ additions on mechanical biofunctionality of Ti-29Nb-13Ta-4.6Zr for biomedical applications, Ceramic Transactions 2011; 228: 75–81. https://doi.org/10.1002/9781118144565.ch8
  • 17. Zhang L. C., Klemm D., Eckert J., Hao Y. L., Sercombe T. B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy, Scripta Materialia 2011; 65(1): 21–24.
  • 18. Kafkas F., Thomas E. Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding, Journal of Alloys and Compounds 2014; 617: 359–366.
  • 19. Hao Y. L., et al. Super-elastic titanium alloy with unstable plastic deformation, Applied Physics Letters 2005; 87(9). [20. Arisoy Y. M., Özel T. Machine learning based predictive modeling of machining induced microhardness and grain size in Ti–6Al–4V alloy, Materials and Manufacturing Processes 2015; 30(4): 425–433.
  • 20. Gupta B. R. Friction and wear mechanism of polymers, their composites and nanocomposites, Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites, Elsevier, 2023; 51–117.
  • 21. Mahdi O. S. Preparation and characterization of hydroxyapatite from bovine teeth, Advances in Natural and Applied Sciences 2017; 11: 623–630.
  • 22. Praveenkumar K., Kabadi V. R. Realistic approach to pin-on-disc wear testing measurement, International Journal of Advanced Production and Industrial Engineering 2017; 610: 47–53.
  • 23. Ulusoy U. A review of particle shape effects on material properties for various engineering applications: from macro to nanoscale, Minerals 2023; 13(1): 91.
  • 24. Selvakumar M., et al. Mechanical properties of titanium–titanium boride composites through nanoindentation and ultrasonic techniques—an evaluation perspective, Powder Metallurgy and Metal Ceramics 2015; 53: 557–565.
  • 25. Prakash K., Soorya, et al. Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B₄C metal matrix composites, Ain Shams Engineering Journal 2018; 9(4): 1489–1496.
  • 26. Sozhamannan G. G., Mohamed Yusuf G. M., Aravind, Kumaresan G., Velmurugan K., Venkatachalapathy V. S. K. Effect of applied load on the wear performance of 6061 Al/nano TiCp/Gr hybrid composites, Materials Today: Proceedings 2018; 5(2): 6489–6496.
  • 27. Arul S. Effect of nickel reinforcement on microhardness and wear resistance of aluminum alloy Al7075, Materials Today: Proceedings 2020; 24: 1042–1051.
  • 28. Hayat M. D., et al. Titanium metal matrix composites: An overview, Composites Part A: Applied Science and Manufacturing 2019; 121: 418–438.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Błędna numeracja bibliografii. Pod poz. 19 znajdują się dwa dokumenty. Właściwa liczba źródeł to 29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ffbf558-29a4-4621-8028-6ea483473452
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.