PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A general fixed point theorem for a pair of multi-valued mappings in partial metric spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to prove a general fixed point theorem for a pair of multi-valued mappings satisfying a new type of implicit relation in partial metric spaces, which generalizes Theorem 2.2 [4], Theorem 3.1 [3], Theorem 3.2 [7], Corollary 2.3 [4], Theorem 2.8 [16] and obtain other particular results.
Rocznik
Tom
Strony
129--141
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti Bacău, 600115, Romania
Bibliografia
  • [1] Ahmed J., Di Bari C., Cho Y.J., Arshad M., Some fixed point results for multi-valued mappings in partial metric spaces, Fixed Point Theory Appl., 2013(175) (2013).
  • [2] Altun I., Simsek H., Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., 1(2008), 1-8.
  • [3] Aydi H., Abbas M., Vetro C., Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., 159(2012), 3234-3242.
  • [4] Aydi H., Abbas M., Vetro C., Common fixed points for multi-valued generalized contractions on partial metric spaces, RACSAM, (2013), 1-19.
  • [5] Kaewcharoen A., Yuying T., Coincidence points and fixed point theorems for multi-valued mappings, Intern. J. Pure Appl. Math., 89(4) (2013), 531-546.
  • [6] Khan A.R., Abbas M., Nazir T., Ionescu C., Fixed point for multi-valued contractive mappings in partial metric spaces, Abstr. Appl. Anal., Volume 2014, Article ID 230708.
  • [7] Macansantos P.S., A generalized Nadler-type theorem in partial metric spaces, Intern. J. Math. Anal., 7(7) (2013), 343-348.
  • [8] Macansantos P.S., A fixed point theorem for multi-functions in partial metric spaces, J. Nonlinear Anal. Appl., 2013(2013), 1-7.
  • [9] Matthews S.G., Partial metric topology, Proc. 8-th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728(1994), 183-197.
  • [10] Nadler S.B., Multi-valued contractive mappings, Pacifc J. Math., 30(1969), 475-488.
  • [11] Popa V., Fixed point theorems for implicit contractive mappings, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 7(1997), 129-133.
  • [12] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math., 32(1999), 1157-163.
  • [13] Popa V., A general fixed point theorem for weakly commuting multi-valued mappings, Anal. Univ. “Dunărea de Jos" Galaţi, Ser. Mat. Fiz. Mec. Teor. Fasc. II, 16(22) (1999), 19-22.
  • [14] Popa V., A general coincidence theorem for multi-valued mappings satisfying an implicit relation, Demonstr. Math., 33(1) (2000), 159-164.
  • [15] Popa V., Coincidence and fixed point theorems for noncontinuous hybrid contractions, Nonlinear Anal. Forum, 7(2002), 153-158.
  • [16] Rao K.P.R., Rao K.R.K., Unique common fixed point theorems for pairs of hybrid maps under new conditions in partial metric spaces, Demonstr. Math., 47(3) (2014), 715-725.
  • [17] Vetro C., Vetro F., Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl., 6(2013), 152-161.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff9f4d1-3e96-4a00-969c-4dde445709d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.