PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Evaluation of Biogas Yield and Physicochemical Properties of Three-Phase and Traditional Olive Oil Mill Wastes – The Most Suitable Choice for Efficient Anaerobic Digestion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Olive oil mill waste is characterized by its high organic matter content, especially fatty acids, polyphenols, sugars, and proteins. These nutrients can be used as a source of energy for biogas production. However, olive oil mill waste can also contain heavy metals such as lead, cadmium, copper, and zinc that can be absorbed by plants. In addition, very high concentrations of heavy metals can also inhibit the anaerobic digestion process by affecting the methanogenic bacteria involved in biogas production The aim of this research is to determine the composition of solid and liquid rejections from traditional and continuous three-phase crushing systems, by analyzing samples from different oil mills in the eastern region of Morocco. We also applied the technology of anaerobic digestion of solid and liquid waste forms of oil mills, to make a link between the biogas yield and the physicochemical characteristics of these wastes. The results suggest that traditional oil mill wastewater (Discontinuous OMWW) has high organic matter, nutrients, and heavy metals content and a low concentration of phenolic compounds, which can increase its biogas production potential with a production of 10.02 Nml/g VS, while three-phase wastewater (Continuous OMWW) has limited biogas production potential (3.83 Nml/g VS) due to the low organic matter and nutrients content, and high concentration of phenolic compounds. Three-phase olive pomace (Continuous OMSW) has a higher biogas production (9.28 Nml/ g VS) than traditional olive pomace (Discontinuous OMSW) with 5.91 Nml/g VS. In fact, the lower content of phenolic compounds and volatile fatty acids favors their anaerobic digestion and improves their biogas production. In conclusion, the selection of the type of waste adapted for biogas production must be based on the physicochemical and microbiological characteristics of these wastes.
Twórcy
autor
  • Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Av. de L’Université Kenitra, Morocco
  • Laboratory for the Improvement of Agricultural Protection, Biotechnologies, and the Environment (LAPABE), Faculty of Sciences, Mohammed First University, Oujda, Morocco
  • Plant Biotechnology Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
autor
  • Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Av. de L’Université Kenitra, Morocco
  • Laboratory for the Improvement of Agricultural Protection, Biotechnologies, and the Environment (LAPABE), Faculty of Sciences, Mohammed First University, Oujda, Morocco
  • Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Av. de L’Université Kenitra, Morocco
  • Laboratory for the Improvement of Agricultural Protection, Biotechnologies, and the Environment (LAPABE), Faculty of Sciences, Mohammed First University, Oujda, Morocco
  • Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Av. de L’Université Kenitra, Morocco
Bibliografia
  • 1. Afilal M.E., Belkhadir N., Daoudi H., et al. 2013. Fermentation méthanique des différents substrats organiques (Methanic fermentation of different organic substrates). J. Mater. Environ. Sci, 4(1), 11–16.
  • 2. Afilal M.E., Elasri O., Merzak Z. 2014. Organic waste characterization and evaluation of its potential biogas. J. Mater. Environ. Sci, 5(4), 1160–1169.
  • 3. Al Afif R., Linke B. 2019. Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor. Energy, 171, 1046–1052. https://doi.org/10.1016/j.energy.2019.01.080
  • 4. Alburquerque J.A., Gonzálvez J., García D., et al. 2004. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresource Technology, 91(2), 195–200. https://doi.org/10.1016/S0960-8524(03)00177-9
  • 5. APHA. 2017. Standard methods for the examination of water and wastewater. American Public Health Association. https://www.apha.org/
  • 6. Caballero-Guerrero B., Garrido-Fernández A., Fernando G., et al. 2022. Antimicrobial effects of treated olive mill waste on foodborne pathogens. LWT- Food Science and Technology, 164, 113628. https://doi.org/10.1016/j.lwt.2022.113628
  • 7. Ben Sassi A., Boularbah A., Jaouad A., et al. 2006. A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochemistry, 41(1), 74–78. https://doi.org/10.1016/J.PROCBIO.2005.03.074
  • 8. Borja R., Rincón B., Raposo F., et al. 2002. A study of anaerobic digestibility of two-phases olive mill solid waste (OMSW) at mesophilic temperature. Process Biochemistry, 38(5), 733–742. https://doi.org/10.1016/S0032-9592(02)00202-9
  • 9. Cuevas M., Martínez-Cartas M.L., Pérez-Villarejo L., et al. 2019. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew. Energy, 132, 911–920. https://doi.org/10.1016/j.renene.2018.08.053
  • 10. De Marco E., Savarese M., Paduano A., et al. 2007. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem, 104, 858–867. https://doi.org/10.1016/j.foodchem.2006.10.005
  • 11. Dermeche S., Nadour M., Larroche C., et al. 2013. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48(10), 1532–1552. https://doi.org/10.1016/J.PROCBIO.2013.07.010
  • 12. Elabdouni A., Haboubi K., Merimi I., et al. 2020. Olive mill wastewater (OMW) production in the province of Al-Hoceima (Morocco) and their physico-chemical characterization by mill types. Materials Today: Proceedings, 27, 3145–3150. https://doi.org/10.1016/J.MATPR.2020.03.806
  • 13. El-Gohary F., Tawfik A., Badawy M., et al. 2009. Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW). Bioresource Technology, 100(7), 2147–2154. https://doi.org/10.1016/J.BIORTECH.2008.10.051
  • 14. El Yamani M., Sakar E.H., Boussakouran A., et al. 2020. Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. Environmental technology, 41(23), 3081–3093. https://doi.org/10.1080/09593330.2019.1597926
  • 15. Fezzani B., Ben Cheikh R. 2009. Extension of the anaerobic digestion model No. 1 (ADM1) to include phenol compounds biodegradation processes for simulating the anaerobic co-digestion of olive mill wastes at mesophilic temperature. Journal of Hazardous Materials, 172(2–3), 1430–1438. https://doi.org/10.1016/j.jhazmat.2009.08.017
  • 16. Gannoun H., Othman N.B., Bouallagui H., et al. 2007. Mesophilic and thermophilic anaerobic codigestion of olive mill wastewaters and abattoir wastewaters in an upflow anaerobic filter. Industrial & engineering chemistry research, 46(21), 6737–6743. https://doi.org/10.1021/ie061676r
  • 17. García Martín J.F., Cuevas M., Feng C.H., et al. 2020. Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processus, 8(5), 511. https://doi.org/10.3390/pr8050511
  • 18. Gunay A., Karadag D. 2015. Recent developments in the anaerobic digestion of olive mill effluents. Process Biochemistry, 50(11), 1893–1903. https://doi.org/10.1016/J.PROCBIO.2015.07.008
  • 19. International Olive Council. 2022. The world consumption of olive oil has increased over the last three years. https://www.internationaloliveoil.org/la-consommation-mondiale-dhuile-dolive-a-augmenteau-cours-des-trois-dernieres-annees/?lang=fr
  • 20. ISO 15705: Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. 2nd edition, November 2002.
  • 21. Mata-Sánchez J., Pérez-Jiménez J.A., Díaz-Villanueva M.J., et al. 2013. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel, 113, 750–756. https://doi.org/10.1016/j.fuel.2013.06.019
  • 22. Messineo A., Maniscalco M.P., Volpe R. 2020. Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state of the art technology. Science of The Total Environment, 703, 135508. https://doi.org/10.1016/J.SCITOTENV.2019.135508
  • 23. Murphy J., Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 2731–2736. https://doi.org/10.1016/S0003-2670(00)88444-5
  • 24. NF EN 1899-2: Water quality - Determination of biochemical oxygen demand after n days (BODn) - Part 2: Method for undiluted samples. May 1988.
  • 25. Oz NA, Uzun AC. 2015. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrasonics Sonochemistry, 22, 565–572. https://doi.org/10.1016/J.ULTSONCH.2014.04.018
  • 26. Pellera F.M., Gidarakos E. 2016. Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. Journal of Environmental Chemical Engineering, 4(3), 3217–3229. https://doi.org/10.1016/J.JECE.2016.05.026
  • 27. Pellera F.M., Santori S., Pomi R., et al. 2016. Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste. Waste Management, 58, 160–168. https://doi.org/10.1016/J.WASMAN.2016.08.008
  • 28. Pinto-Ibieta F., Serrano A., Jeison D., et al. 2016. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste. Bioresource Technology, 211, 58–64. https://doi.org/10.1016/J.BIORTECH.2016.03.031
  • 29. Rincón B., Borja R., González J.M., et al. 2008. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal, 40(2), 253–261. https://doi.org/10.1016/J.BEJ.2007.12.019
  • 30. Rodier J., Legube B., Merlet N., et al. 2009. L’analyse de l’eau [Water analyses]. 9th ed. Paris: Dunod.
  • 31. Rubio J.A., Romero L.I., Wilkie A.C., et al. 2019. Mesophilic Anaerobic Co-digestion of Olive-Mill Waste With Cattle Manure: Effects of Mixture Ratio. Front. Sustain. Food Syst, 3, 9. https://doi.org/10.3389/fsufs.2019.00009
  • 32. Ntougias S., Bourtzis K., Tsiamis G. 2013. The Microbiology of Olive Mill Wastes. BioMed Research International, 2013, 784591. https://doi.org/10.1155/2013/784591
  • 33. Vlyssides A.G., Loizides M., Karlis P.K. 2004. Integrated strategic approach for reusing olive oil extraction by-products. Journal of Cleaner Production, 12(6), 603–611. https://doi.org/10.1016/S0959-6526(03)00078-7
  • 34. Zaier H., Chmingui W., Rajhi H., et al. 2017. Physicochemical and microbiological characterization of olive mill wastewater (OMW) of different regions of Tunisia (North, Sahel, South). Journal of new sciences, Agriculture and Biotechnology, 48(2), 2888–2897.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff8ff1e-60a7-441b-b54d-1d7a459420b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.