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Norm attaining bilinear forms on the plane with the octagonal

norm

Sung Guen Kim

Summary. For given unit vectors x1 ,⋯, xn of a real Banach space E , we

define

NA(L(
n
E))(x1 , . . . , xn) = {T ∈ L(

n
E) ∶ ∣T(x1 , . . . , xn)∣ = ∥T∥ = 1},

where L(
nE) denotes the Banach space of all continuous n-linear forms

on E endowed with the norm ∥T∥ = sup{∣T(x1 , . . . , xn)∣ ∶ ∥xk∥ = 1, 1 ⩽

k ⩽ n}. In this paper, we classify NA(L(2R2

o(w)))((x1 , x2), (y1 , y2))

for unit vectors (x1 , x2), (y1 , y2) ∈ R2

o(w) , where R
2

o(w) = R2
with the

octagonal norm with weight 0 < w < 1.
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1. Introduction

Let us introduce a brief history of norm attaining multilinear forms and polynomials on

Banach spaces. In 1961 Bishop and Phelps [2] initiated and showed that the set of norm

attaining functionals on a Banach space is dense in the dual space. Shortly aýer, attention

was paid to possible extensions of this result to more general settings, specially bounded

linear operators between Banach spaces. Fe problem of denseness of norm attaining

functions has moved to other types of mappings like multilinear forms or polynomials.

Fe first result about norm attaining multilinear forms appeared in a joint work of Aron,

Finet and Werner [1], where they showed that the Radon–Nikodym property is suÚcient
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for the denseness of norm attaining multilinear forms. Choi and Kim [3] showed that the

Radon–Nikodym property is also suÚcient for the denseness of norm attaining polyno-

mials. Jimenez-Sevilla and Paya [5] studied the denseness of norm attaining multilinear

forms and polynomials on preduals of Lorentz sequence spaces.

Let n ∈ N, n ⩾ 2. We write SE and BE for the unit sphere and the closed unit ball of

the real Banach space E . We denote byL(nE) the Banach space of all continuous n-linear

forms on E endowed with the norm ∥T∥ = sup{∣T(x1 , . . . , xn)∣ ∶ ∥xk∥ = 1, 1 ⩽ k ⩽ n}. Fe

subspace of all continuous symmetric n-linear forms on E is denoted by Ls(nE). A map-

ping P∶ E → R is a continuous n-homogeneous polynomial if there exists T ∈ L(nE)
such that P(x) = T(x , . . . , x) for every x ∈ E . We denote by P(nE) the Banach space

of all continuous n-homogeneous polynomials from E into R endowed with the norm

∥P∥ = sup{∣P(x)∣ ∶ ∥x∥ = 1}. For more details about the theory of multilinear mappings

and polynomials on a Banach space, we refer to [4].

Fe elements x1 , . . . , xn ∈ E is called norming points of T ∈ L(nE) if ∥x1∥ = ⋅ ⋅ ⋅ =
∥xn∥ = 1 and ∣T(x1 , . . . , xn)∣ = ∥T∥. In this case, T is called a norm attaining n-linear

form at x1 , . . . , xn . Similarly, an element x ∈ E is called a norming point of P ∈ P(nE)
if ∥x∥ = 1 and ∣P(x)∣ = ∥P∥. In this case, P is called a norm attaining n-homogeneous

polynomial at x . Let X = L(nE) or Ls(nE). For x , x1 , . . . , xn ∈ SE , we define

NA(X)(x1 , . . . , xn) = {T ∈ X ∶ ∣T(x1 , . . . , xn)∣ = ∥T∥ = 1}

and

NA(P(nE))(x) = {P ∈ P(nE) ∶ ∣P(x)∣ = ∥P∥ = 1}.
Notice that

NA(L(nE))(x1 , . . . , xn) = NA(L(nE))(±x1 , . . . ,±xn),
NA(Ls(nE))(x1 , . . . , xn) = NA(Ls(nE))(±xσ(1), . . . ,±xσ(n))

and

NA(P(nE))(x) = NA(P(nE))(−x)
for all x , x1 , . . . , xn ∈ SE and for all permutation σ on {1, . . . , n}.

It seems to be natural and interesting to study about

NA(L(nE))(x1 , . . . , xn),NA(Ls(nE))(x1 , . . . , xn) and NA(P(nE))(x)

for x , x1 , . . . , xn ∈ SE . Kim [6] classified NA(P(2 l 2p))((x1 , x2)) for (x1 , x2) ∈ S l 2p and p =
1, 2,∞, where l 2p = R2

with the lp-norm. Kim [8] classifiedNA(L(2 l 2
1
)((x1 , x2), (y1 , y2))

for (x1 , x2), (y1 , y2) ∈ S l 2
1

.

Let R2

o(w) denote R
2
with the octagonal norm with weight 0 < w < 1

∥(x , y)∥o(w) = max{∣x∣ +w∣y∣,w∣x∣ + ∣y∣}.
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Notice that

∥(x , y)∥o(w) = ∥(±x ,±y)∥o(w) for (x , y) ∈ R
2

o(w).

In this paper, we classifyNA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) for (x1 , x2), (y1 , y2) ∈ SR2

o(w)
.

2. Results

Let T((x1 , y1), (x2 , y2)) = ax1x2+by1y2+cx1y2+dx2 y1 ∈ L(2R2

o(w)) for some a, b, c, d ∈
R. For simplicity, we denote T = (a, b, c, d). Froughout this paper, we let 0 < w < 1.

2.1.Feorem ([7]). Let T ∈ L(2R2

o(w)) be such that T((x1 , y1), (x2 , y2)) = ax1x2+by1 y2+
cx1y2 + dx2 y1 = (a, b, c, d) for some a, b, c, d ∈ R. Fen

∥T∥ = max{∣a∣, ∣b∣, ∣c∣, ∣d∣, ∣a∣ + ∣c∣
1 +w

,
∣a∣ + ∣d∣
1 +w

,
∣b∣ + ∣c∣
1 +w

,
∣b∣ + ∣d∣
1 +w

,

∣a + b∣ + ∣c + d∣
(1 +w)2 ,

∣a − b∣ + ∣c − d∣
(1 +w)2 }.

2.2. Feorem. Let T = (a, b, c, d) ∈ L(2R2

o(w)) for some a, b, c, d ∈ R and let (x1 , y1),
(x2 , y2) ∈ R2

o(w). Fe following are equivalent:

(i) T ∈ NA(L(2R2

o(w)))((x1 , y1), (x2 , y2));
(ii) T1 ∶= (−a, b,−c, d) ∈ NA(L(2R2

o(w)))((−x1 , y1), (x2 , y2));
(iii) T2 ∶= (−a, b, c,−d) ∈ NA(L(2R2

o(w)))((x1 , y1), (−x2 , y2));
(iv) T3 ∶= (a, b,−c,−d) ∈ NA(L(2R2

o(w)))((−x1 , y1), (−x2 , y2));
(v) T4 ∶= (−a,−b,−c,−d) ∈ NA(L(2R2

o(w)))((−x1 ,−y1), (x2 , y2));
(vi) T5 ∶= (a,−b,−c, d) ∈ NA(L(2R2

o(w)))((x1 , y1), (x2 ,−y2)).

Proof. It is obvious.

2.3. Feorem. Let (x1 , y1), (x2 , y2) ∈ R2

o(w). Fen

NA(L(2R2

o(w)))((x1 , y1), (x2 , y2)) = NA(L(2R2

o(w)))((−x1 ,−y1), (x2 , y2))
= NA(L(2R2

o(w)))((x1 , y1), (−x2 ,−y2))
= NA(L(2R2

o(w)))((−x1 ,−y1), (−x2 ,−y2)).

Proof. It is obvious.

2.4. Lemma. Let x j > 0 and є j = ±1 for j = 1, . . . , n. Suppose that ∑1⩽ j⩽n x j = 1. Fen

∣∑1⩽ j⩽n є jx j∣ = 1 if and only if (є j = 1 for every j = 1, . . . , n) or (є j = −1 for every j =
1, . . . , n).
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Proof. (⇐). It is obvious.

(⇒). Use induction on n.

If n = 1, then it’s ok. Suppose that (⇒) is true for n = k for some k ∈ N. Suppose that

∑
1⩽ j⩽k+1

x j = 1 = ∑
1⩽ j⩽k+1

є jx j .

Let y ∶= ∑1⩽ j⩽k x j > 0.

Claim. y = ∣∑1⩽ j⩽k є jx j∣
It follows that

1 = ∣ ∑
1⩽ j⩽k+1

є jx j∣ ⩽ ∣ ∑
1⩽ j⩽k

є jx j∣ + xk+1 ⩽ y + xk+1 = 1,

which shows that

1 = ∣ ∑
1⩽ j⩽k

є jx j∣ + xk+1 = y + xk+1 .

Hence, the claim holds. Notice that

1 = ∣ ∑
1⩽ j⩽k

є j(
x j

y
)∣ = ∑

1⩽ j⩽k

x j

y
.

By the induction hypothesis, (є j = 1 for every j = 1, . . . , k) or (є j = −1 for every j =
1, . . . , k).
Case 1. є j = 1 for every j = 1, . . . , k.

We claim that єk+1 = 1. Assume that єk+1 = −1. Fen

y + xk+1 = ∣y − xk+1∣ = ±(y − xk+1).

If y+xk+1 = y−xk+1 , then xk+1 = 0, which is a contradiction. If y+xk+1 = −(y−xk+1), then
y = 0, which is a contradiction. Hence, єk+1 = 1. Ferefore, є j = 1 for every j = 1, . . . , k + 1.
Case 2. є j = −1 for every j = 1, . . . , k.

It follows that

y + xk+1 = ∣y − єk+1xk+1∣.

By the proof of Case 1, −єk+1 = 1. Ferefore, є j = −1 for every j = 1, . . . , k + 1. We complete

the proof.

Notice that

{ ± (0, 1), ( 1

1 +w
,

1

1 +w
),±(1, 0), ( 1

1 +w
,
−1

1 +w
)}
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is the set of all extreme points of BR2

0(w)
. Let

Ω = {(0, 1), ( 1

1 +w
,

1

1 +w
), (1, 0), ( 1

1 +w
,
−1

1 +w
)},

B1 = {t(0, 1) + (1 − t)( 1

1 +w
,

1

1 +w
) ∶ 0 ⩽ t ⩽ 1},

B2 = {t(
1

1 +w
,

1

1 +w
) + (1 − t)(1, 0) ∶ 0 ⩽ t ⩽ 1},

B3 = {t(1, 0) + (1 − t)( 1

1 +w
,
−1

1 +w
) ∶ 0 ⩽ t ⩽ 1},

B4 = {t(
1

1 +w
,
−1

1 +w
) + (1 − t)(0,−1) ∶ 0 ⩽ t ⩽ 1},

A i j = B i × B j for i , j = 1, . . . , 4.

Notice that

SR2

h(w)
= ⋃

1⩽k⩽4
(±Bk).

We are in position to classifyNA(L(2R2

o(w)))(X ,Y) for every X = (x1 , y1),Y = (x2 , y2) ∈
SR2

h(w)
. By Feorem 2.3, we may assume that x j ⩾ 0 for every j = 1, 2.

2.5.Feorem. Let X ,Y ∈ A i j for some i , j = 1, . . . , 4.Write X = (x1 , y1),Y = (x2 , y2), xk ⩾
0 for every k = 1, 2. Fen the following statements holds:

(i) (X ,Y) ∈ (B i/Ω) × (B j/Ω)

NA(L(2R2

o(w)))(X ,Y) = {±T ∈ L(2R2

o(w)) ∶ 1 = T(U ,U ′) = T(U ,V ′) = T(V ,U ′)
= T(V ,V ′) if extB i = {U ,V},
extB j = {U ′

,V ′}},

where extB i denotes the set of end points of B i . Moreover, NA(L(2R2

o(w)))(X ,Y) =
{±T0} for some T0 ∈ L(2R2

o(w)).
(ii) (X ,Y) ∈ (B i/Ω) × (B j ∩Ω)

NA(L(2R2

o(w)))(X ,Y) = { ± T ∈ L(2R2

o(w)) ∶ 1 = T(U ,Y) = T(V ,Y)
if extB i = {U ,V}, ∣T(W1 ,W2)∣ ⩽ 1

for all Wk ∈ extBR2

o(w)
, k = 1, 2},

where extBR2

o(w)
denotes the set of all extreme points of BR2

o(w)
.
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(iii) (X ,Y) ∈ (B i ∩Ω) × (B j/Ω)

NA(L(2R2

o(w)))(X ,Y) = { ± T ∈ L(2R2

o(w)) ∶ 1 = T(X ,U ′) = T(X ,V ′)
if extB j = {U ′

,V ′}, ∣T(W1 ,W2)∣ ⩽ 1

for all Wk ∈ extBR2

o(w)
, k = 1, 2}.

(iv) (X ,Y) ∈ (B i ∩Ω) × (B j ∩Ω)

NA(L(2R2

o(w)))(X ,Y) = {T ∈ L(2R2

o(w)) ∶ 1 = ∣T(X ,Y)∣, ∣T(W1 ,W2)∣ ⩽ 1

for all Wk ∈ extBR2

o(w)
, k = 1, 2}.

Proof. Case 1. Let X = tU + sV and Y = t′U ′ + s′V ′
for some 0 < t, t′, s, s′ < 1, t + s =

t′ + s′ = 1. Let

F1 ∶= {±T ∈ L(2R2

o(w)) ∶ 1 = T(U ,U ′) = T(U ,V ′) = T(V ,U ′)
= T(V ,V ′) if extB i = {U ,V}, extB j = {U ′

,V ′}}.

We claim that NA(L(2R2

o(w)))(X ,Y) = F1 .

(⊆) ∶ Suppose that T ∈ NA(L(2R2

o(w)))(X ,Y).
Claim 1. T(U ,U ′) = T(U ,V ′) = T(V ,U ′) = T(V ,V ′) = 1 or T(U ,U ′) = T(U ,V ′) =
T(V ,U ′) = T(V ,V ′) = −1.

First, we will show that

∣T(U ,U ′)∣ = ∣T(U ,V ′)∣ = ∣T(V ,U ′)∣ = ∣T(V ,V ′)∣ = 1.

Assume the contrary. Without loss of generality we may assume that ∣T(U ,U ′)∣ < 1. It

follows that

1 = ∣T(X ,Y)∣ = ∣T(tU + sV , t′U ′ + s′V ′)∣
= ∣tt′T(U ,U ′) + ts′T(U ,V ′) + t′sT(V ,U ′) + ss′T(V ,V ′)∣
⩽ tt′∣T(U ,U ′)∣ + ts′∣T(U ,V ′)∣ + t′s∣T(V ,U ′)∣ + ss′∣T(V ,V ′)∣
< tt′ + ts′∣T(U ,V ′)∣ + t′s∣T(V ,U ′)∣ + ss′∣T(V ,V ′)∣
⩽ (t + s)(t′ + s′) = 1,

which is a contradiction. Hence,

∣T(U ,U ′)∣ = ∣T(U ,V ′)∣ = ∣T(V ,U ′)∣ = ∣T(V ,V ′)∣ = 1.

Since tt′, ts′, t′s, ss′ > 0 and

∣tt′T(U ,U ′) + ts′T(U ,V ′) + t′sT(V ,U ′) + ss′T(V ,V ′)∣ = 1,
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by Lemma 2.4, the claim holds. Hence, T ∈ F1 .

(⊇) ∶ Let T ∈ F1 .

Claim 2. ∥T∥ = 1

Suppose that (X ,Y) ∈ A11 . Fen X = t(0, 1) + s(w , 1),Y = t′(0, 1) + s′(w , 1) and
T = ±(w2

, 1,w ,w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w2
, 1,w ,w)}.

Suppose that (X ,Y) ∈ A12 . Fen X = t(0, 1) + s(w , 1),Y = t′(1, 0) + s′(w , 1) and
T = ±(w ,w ,w2

, 1). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,w ,w2
, 1)}.

Suppose that (X ,Y) ∈ A13 . Fen X = t(0, 1) + s(w , 1),Y = t′(1, 0) + s′(w ,−1) and
T = ±(w ,−w ,−w2

, 1). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,−w ,−w2
, 1)}.

Suppose that (X ,Y) ∈ A14. Fen X = t(0, 1) + s(w , 1),Y = t′(0,−1) + s′(w ,−1) and
T = ±(w2

,−1,−w ,w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w2
,−1,−w ,w)}.

Suppose that (X ,Y) ∈ A21 . Fen X = t(1, 0) + s(w , 1),Y = t′(0, 1) + s′(w , 1) and
T = ±(w ,w , 1,w2). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,w , 1,w2)}.

Suppose that (X ,Y) ∈ A22. Fen (x1 , y1) = t(1, 0) + s(w , 1), (x2 , y2) = t′(1, 0) +
s′(w , 1) and T = ±(1,w2

,w ,w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(1,w2
,w ,w)}.

Suppose that (X ,Y) ∈ A23 . Fen (x1 , y1) = t(1, 0) + s(w , 1), (x2 , y2) = t′(1, 0) +
s′(w ,−1) and T = ±(1,−w2

,−w ,w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(1,−w2
,−w ,w)}.

Suppose that (X ,Y) ∈ A24. Fen (x1 , y1) = t(1, 0) + s(w , 1), (x2 , y2) = t′(0,−1) +
s′(w ,−1) and T = ±(w ,−w ,−1,w2). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,−w ,−1,w2)}.
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Suppose that (X ,Y) ∈ A31 . Fen (x1 , y1) = t(1, 0) + s(w ,−1), (x2 , y2) = t′(0, 1) +
s′(w , 1) and T = ±(w ,−w , 1,−w2). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,−w , 1,−w2)}.

Suppose that (X ,Y) ∈ A32 . Fen (x1 , y1) = t(1, 0) + s(w ,−1), (x2 , y2) = t′(1, 0) +
s′(w , 1) and T = ±(1,−w2

,w ,−w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(1,−w2
,w ,−w)}.

Suppose that (X ,Y) ∈ A33 . Fen (x1 , y1) = t(1, 0) + s(w ,−1), (x2 , y2) = t′(1, 0) +
s′(w ,−1) and T = ±(1,w2

,−w ,−w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(1,w2
,−w ,−w)}.

Suppose that (X ,Y) ∈ A34 . Fen (x1 , y1) = t(1, 0) + s(w ,−1), (x2 , y2) = t′(0, 1) +
s′(w ,−1) and T = ±(w ,w ,−1,−w2). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,w ,−1,−w2)}.

Suppose that (X ,Y) ∈ A41 . Fen (x1 , y1) = t(0,−1) + s(w ,−1), (x2 , y2) = t′(0, 1) +
s′(w , 1) and T = ±(w2

,−1,w ,−w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w2
,−1,w ,−w)}.

Suppose that (X ,Y) ∈ A42 . Fen (x1 , y1) = t(0,−1) + s(w ,−1), (x2 , y2) = t′(1, 0) +
s′(w , 1) and T = ±(w ,−w ,w2

,−1). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,−w ,w2
,−1)}.

Suppose that (X ,Y) ∈ A43 . Fen (x1 , y1) = t(0,−1) + s(w ,−1), (x2 , y2) = t′(1, 0) +
s′(w ,−1) and T = ±(w ,−w ,w2

,−1). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w ,−w ,w2
,−1)}.

Suppose that (X ,Y) ∈ A44 . Fen (x1 , y1) = t(0,−1)+ s(w ,−1), (x2 , y2) = t′(0,−1)+
s′(w ,−1) and T = ±(w2

, 1,−w ,−w). By Feorem 2.1, ∥T∥ = 1. Hence,

NA(L(2R2

o(w)))((x1 , x2), (y1 , y2)) = {±(w2
, 1,−w ,−w)}.

Hence, the claim 2 holds.

It follows that

∣T(X ,Y)∣ = ∣T(tU + sV , t′U ′ + s′V ′)∣
= ∣tt′T(U ,U ′) + ts′T(U ,V ′) + t′sT(V ,U ′) + ss′T(V ,V ′)∣
= ∣tt′ + ts′ + t′s + ss′∣ = (t + s)(t′ + s′) = 1 = ∥T∥,
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which shows that T ∈ NA(L(2R2

o(w)))(X ,Y).
Case 2. Let X = tU + sV and Y = t′U ′ + s′V ′

for some 0 < t, s < 1, t + s = 1, t′ = 0 or 1.

Fen Y = U ′
or V ′

. Let

F2 = {±T ∈ L(2R2

o(w)) ∶ 1 = T(U ,Y) = T(V ,Y) if extB i = {U ,V}, ∣T(W1 ,W2)∣ ⩽ 1

for allWk ∈ extBR2

o(w)
, k = 1, 2}.

We claim that NA(L(2R2

o(w)))(X ,Y) = F2 .

(⊆) ∶ Suppose that T ∈ NA(L(2R2

o(w)))(X ,Y).
Claim 3. T(U ,Y) = T(V ,Y) = 1 or T(U ,Y) = T(V ,Y) = −1.

First, we will show that

∣T(U ,Y)∣ = ∣T(V ,Y)∣ = 1.

Assume the contrary. Without loss of generality we may assume that ∣T(V ,Y)∣ < 1. Let

t′ = 0. Fen Y = V ′
. It follows that

1 = ∣T(X ,Y)∣ = ∣T(tU + sV ,V ′)∣ = ∣tT(U ,V ′) + sT(V ,V ′)∣
⩽ t∣T(U ,Y)∣ + s∣T(V ,Y)∣ < t∣T(U ,Y)∣ + ∣T(V ,Y)∣ ⩽ t + s = 1,

which is a contradiction. Hence,

∣T(U ,Y)∣ = ∣T(V ,Y)∣ = 1.

Since t, s > 0 and

∣tT(U ,Y) + sT(V ,Y)∣ = 1,

by Lemma 2.4, the claim 3 holds.

Let t′ = 1. Fen Y = U ′
. It follows that

1 = ∣T(X ,Y)∣ = ∣T(tU + sV ,U ′)∣ = ∣tT(U ,U ′) + sT(V ,U ′)∣
⩽ t∣T(U ,Y)∣ + s∣T(V ,Y)∣ < t∣T(U ,Y)∣ + ∣T(V ,Y)∣ ⩽ t + s = 1,

which is a contradiction. Hence,

∣T(U ,Y)∣ = ∣T(V ,Y)∣ = 1.

Since t, s > 0 and

∣tT(U ,Y) + sT(V ,Y)∣ = 1,

by Lemma 2.4, the claim 3 holds. Since

1 = ∥T∥ = sup{∣T(W1 ,W2)∣ ∶W1 ,W2 ∈ extBR2

o(w)
},
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T ∈ F2 . Hence, NA(L(2R2

o(w)))(X ,Y) ⊆ F2 .

Notice that F2 ⊆ NA(L(2R2

o(w)))(X ,Y) is obvious. Ferefore,

NA(L(2R2

o(w)))(X ,Y) = F2 .

Case 3. Let X = tU + sV and Y = t′U ′ + s′V ′
for some 0 < t′, s′ < 1, t′ + s′ = 1, t = 0 or 1.

Fen X = U or V . Let

F3 = {±T ∈ L(2R2

o(w)) ∶ 1 = T(X ,U ′) = T(X ,V ′) if extB j = {U ′
,V ′}, ∣T(W1 ,W2)∣ ⩽ 1

for allWk ∈ extBR2

o(w)
, k = 1, 2}.

By analogous arguments as those of Case 2, NA(L(2R2

o(w)))(X ,Y) = F3 .

Case 4. Notice that

(X ,Y) = (U ,U ′), (U ,V ′), (V ,U ′) or (V ,V ′).

Let

F4 = {T ∈ L(2R2

o(w)) ∶ 1 = ∣T(X ,Y)∣, ∣T(W1 ,W2)∣ ⩽ 1

for allWk ∈ extBR2

o(w)
, k = 1, 2}.

It is obvious that NA(L(2R2

o(w)))(X ,Y) = F4 . Ferefore, we complete the proof.
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