PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pre-camber control of large-span prestressed concrete continuous rigid-frame bridges under cantilever construction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the commonly used cantilever construction method, the construction is greatly affected by the linearity and stress control, and the failure of linearity and stress control will lead to the deformation of the bridge. To solve this problem, the study carried out finite element analysis modeling of large-span prestressed concrete continuous rigid bridge, and measured the creep coefficient by creep test to determine the model parameters. The experimental results show that. When the self weight of concrete is 1.10γ. At that time, the deflection variation at the cantilever end of the main beam reached its maximum value near the mid span and side span merging sections, which were 8.6 mm and 9.7 mm, respectively. In the max cantilever state, increasing the concrete capacity decreases the compressive stress at the upper and lower edge of the cross-section to 1.18 MPa and 1.24 MPa, respectively. In the bridge-forming state, increasing the concrete deadweight results in a decrease in the normal stress at the upper and lower edges of the bridge to 1.24 and 1.27, respectively, while the normal stress at the lower edge of the cross-section remains unchanged. The creep modification model obtained from the creep test is able to predict the deformations and stresses of the cantilevered construction of a continuous rigid bridge with a more accurate prediction.
Rocznik
Strony
469--487
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
  • Henan Institute of Construction Technology, Zhengzhou, China
Bibliografia
  • [1] D. Wu, W. Xiong, and J. Guo, "Establishment and repetition survey of primary GNSS control network of Hong Kong-Zhuhai-Macao bridge", Journal of Surveying Engineering, vol. 148, no. 1, pp. 1006-1017, 2022, doi: 10.1061/(ASCE)SU.1943-5428.0000386.
  • [2] Q. Su, Y. Zhu, Y. Chen, et al., "Hong Kong Zhuhai Macao Bridge-Tunnel project immersed tunnel and artificial islands - From an owners’ perspective”, Tunneling and Underground Space Technology, vol. 121, pp. 308-326, 2022, doi: 10.1016/j.tust.2021.104308.
  • [3] M.K. Hoke, "A biocultural examination of home food production and child growth in highland Peru”, American Journal of Human Biology, vol. 32, no. 4, pp. 438-442, 2020, doi: 10.1002/ajhb.23438.
  • [4] S. Reymert, A. Rönnquist, and O. Øiseth, "Systematic metadata analysis of wind-exposed long-span bridges for road vehicle safety assessments”, Journal of Bridge Engineering, vol. 27, no. 2, pp. 104-111, 2022, doi: 10.1061/(ASCE)BE.1943-5592.0001822.
  • [5] T. Siwowski, M. Rajchel, and M.Kulpa, "Design and field evaluation of a hybrid FRP composite - Lightweight concrete road bridge”, Composite Structures, vol. 230, pp. 504-523, 2019, doi: 10.1016/j.compstruct.2019.111504.
  • [6] C. Ma, "Physical properties and durability of green fiber-reinforced concrete for road bridges”, Annales de Chimie-Science des Materiaux, vol. 45, no. 2, pp. 181-189, 2021, doi: 10.18280/ACSM.450211.
  • [7] B. Dai, D. Wu, and Q. Li, "Investigation of multiple-presence factor for traffic loads on road-rail bridges based on a novel extreme value analysis approach”, Structural Safety, vol. 96, pp. 199-214, 2022, doi: 10.1016/j.strusafe.2022.102199.
  • [8] E. Cosenza and D. Losanno, "Assessment of existing reinforced-concrete bridges under road-traffic loads according to the new Italian guidelines”, Structural Concrete, vol. 22, no. 5, pp. 2868-2881, 2021, doi: 10.1002/suco.202100147.
  • [9] Y. Zhu, J. Liu, X. Li, J. Li, L. Zhang, and B. Li, "Improving the temperature stability of superelastic stress of Cu-Al-Mn shape memory alloy in a wide temperature range by torsion pre-deformation”, Materials Letters, vol. 341, no. 15, pp. 214-218, 2023, doi: 10.1016/j.matlet.2023.134214.
  • [10] M. Sarmah, S.K. Deb, and A. Dutta, "Hybrid simulation for evaluation of seismic performance of highway bridge with pier retrofitted using Fe-SMA strips”, Journal of Bridge Engineering, vol. 28, no. 8, pp. 50-67, 2023, doi: 10.1061/jbenf2.beeng-6047.
  • [11] Z. Kang, Z. Zhang, S.Y. Song, Q. Cheng, S. Tao, and Y. Ni, "Effect of pitting corrosion on the mechanical properties and fracture model of steel wires for bridge cable”, Anti-Corrosion Methods and Materials, vol. 70, no. 4, pp. 173-181, 2023, doi: 10.1108/acmm-02-2023-2763.
  • [12] G. He, Y. Li, Z. Zou, and L. Duan, "Effect of concrete creep on pre-camber of continuous rigid-frame bridge”, Journal of Central South University of Technology, vol. 15, no. s1, pp. 337-341, 2008, doi: 10.1007/s11771-008-0376-1.
  • [13] L. Tong, D. Wang, Z.G. Sun, L. Chen, and F. Shi, "Seismic uplift effect at end spans of long-span rigid-frame bridges subjected to near-fault and far-fault ground motions”, Journal of Bridge Engineering, vol. 28, no. 7, pp. 230-249, 2023, doi: 10.1061/jbenf2.beeng-6023.
  • [14] S. Yao, B. Peng, L. Wang, and H. Chen, "Estimation formula of fnished bridge precamber in continuous rigidframe bridges”, Scientifc Reports, vol. 12, art. no. 16034, 2022, doi: 10.1038/s41598-022-20449-4.
  • [15] S. Cui, C. Guo, G. Zeng, L. Xu, J. Ju, and H.Y. Jia, "Influence of hydrodynamic pressure on fragility of high-pier continuous rigid frame bridge subjected to ground motion”, Ocean Engineering, vol. 264, pp. 682-692, 2022, doi: 10.1016/j.oceaneng.2022.112516.
  • [16] L. Sun, Y. Liu, H. Wang, F. Shi, J. Liu, L. Jiang, "Tensile stiffness of perfobond rib connectors in steel-concrete composite pylon of bridges”, Engineering Structures, vol. 284, pp. 3-14, 2023, doi: 10.1016/j.engstruct.2023.115931.
  • [17] Y. Liu, C. Zheng, H. Ba, G. Xu, C. Li, and Q. Xie, "Analysis on the influence factors of construction linear control of continuous rigid structure bridge”, E3S Web of Conferences, vol. 237, art. no. 03020, 2021, doi: 10.1051/e3sconf/202123703020.
  • [18] S. Sun, L. Xing, P. Gui, B. Li, H. Li, L. Zhao, and K. Mei, "Experimental study on the bond performance of steel-basalt fiber composite bars in concrete”, Journal of Composites for Construction, vol. 27, no. 2, pp. 2-15, 2023, doi: 10.1061/jccof2.cceng-3612.
  • [19] M. Cai, W. Li, Z. Wan, J. Sheng, J. Tan, and C. Ma, "Cracking control technique for continuous steel-concrete composite girders under negative bending moment”, Archives of Civil Engineering, vol. 69, no. 3, pp. 239-251, 2023, doi: 10.24425/ace.2023.146078.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff53d4c-da4c-4305-bf36-1688205d0410
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.