PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of geometric and flow parameters of solar air heater roughened with artificial roughness by Taguchi method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the investigation of the optimum design parameters of a solar air heater (SAH) having wire ribs as artificial roughness by using the Taguchi method. The solar air heater has arc shape roughness geometry with apex upstream flow on the absorber plate. The objective of this paper is to obtain a set of parameters that deliver maximum thermo-hydraulic performance. For this objective, a new parameter the thermo-hydraulic improvement parameter (ηTHIP), has been introduced. For the present analysis, the effects of Reynolds number (Re), relative roughness pitch (P/e), angle of attack (α), and relative roughness height (e/Dh), denoted by A, B, C, and D, respectively, have been considered. An (L18 = 61 · 3 2 ) orthogonal array (OA) was chosen as an experimental plan for applying the Taguchi method. The set of control factors for the solar air heater SAH which delivers the maximum Nusselt number (Nu), and minimum friction factor (fr) – are A6B2C2, and A1B1C3 respectively. To obtain the maximum THIP the experimental set-up requires only one single run using the parameter A6B2C2, hence there is no need to run it all 54 times.
Rocznik
Strony
3--33
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Cambridge Institute of Technology, Department of Mechanical Engineering, Tatisilwai, Ranchi, Jharkhand, Pin-835103, India
  • G L Bajaj Institute of Technology and Management, Department of Mechanical Engineering, Greater Noida, Uttar Pradesh, Pin-201308, India
  • Cambridge Institute of Technology, Department of Mechanical Engineering, Tatisilwai, Ranchi, Jharkhand, Pin-835103, India
Bibliografia
  • [1] Khan B.H.: Non-Conventional Energy Resources (2nd Edn.). Tata McGraw Hill, New Delhi 2012.
  • [2] Sahu M.K., Prasad R.K.: A review of the thermal and hydrodynamic performance of solar air heater with roughened absorber plates. J. Enhanc. Heat Transf. 23(2016),47–89.
  • [3] Sahu M.K., Sharma M., Matheswaran M.M., Maitra K.: On the use of various configurations of fins to enhance the performance in rectangular duct of solar air heaters – A review. J. Sol. Energy Eng. 141(2019), 3, 030802.
  • [4] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes (2nd Edn.). Wiley, New York 1991.
  • [5] Sahu M.K., Priyam A., Mishra S., Bishnoi P.: A detailed review on research, technology, configurations and application of wire ribs as artificial roughness in rectangular solar air heater duct. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 235(2021), 4,1211–1234.
  • [6] Lewis M.J.: Optimizing the thermohydraulic performance of rough surfaces. Int. J. Heat Mass Tran. 18(1975), 1243–1248.
  • [7] Webb R.L., Eckert E.R.G.: Application of rough surface to heat exchanger design. Int. J. Heat Mass Tran. 15(1972), 1647–1658.
  • [8] Varun, Sharma N., Bhat I.K., Grover D.: Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique. Sol. Energy 85(2011),2331–2337.
  • [9] Rao R.V., Waghmare G.: Optimization of thermal performance of a smooth flatplate solar air heater using teaching-learning-based optimization algorithm. Cogent. Eng. 2(2015), 3–28.
  • [10] Siddhartha, Sharma N., Varun: A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater. Energy38(2012), 406–413.
  • [11] Chamoli S.: Preference selection index approach for optimization of V down perforated baffled roughened rectangular channel. Energy 93(2015), 1418–1425.
  • [12] Chauhan R., Singh T., Thakur N.S., Patnaik A.: Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method. Renew. Energ. 99(2016), 118–126.
  • [13] Bilen K., Yapici S., Celik C.: A Taguchi approach for investigation of heat transfer from a surface equipped with rectangular blocks. Energ. Convers. Manage. 42(2001),951–961.
  • [14] Varun, Patnaik A., Saini R.P., Singal S.K, Siddhartha: Performance prediction of solar air heater having roughened duct provided with transverse and inclined ribs as artificial roughness. Renew. Energ. 34(2009), 2914–2922.
  • [15] Aghaie A.Z., Rahimi A.B., Akbarzadeh A.: A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel – A Taguchi approach. Renew. Energ. 83(2015), 47–54.
  • [16] Chauhan R., Singh T., Kumar N., Patnaik A., Thakur N.S.: Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method. Appl. Therm. Eng. 116(2017), 100–109.
  • [17] Chamoli S.: A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles. Case Stud. Therm. Eng. 5(2015), 59–69.
  • [18] Hu J., Liu K., Ma L., Su X.: Parameter optimization of solar air collectors with holes on baffle and analysis of flow and heat transfer characteristics. Sol. Energy 174(2018), 878–887.
  • [19] Turgut E., Cakmak G., Yildiz C.: Optimization of the concentric heat exchanger with injector turbulators by Taguchi method. Energ. Convers. Manage. 53(2012), 268–275.
  • [20] Chamoli S., Yu P., Kumar A.: Multi-response optimization of geometric and flow parameters in a heat exchanger tube with perforated disc inserts by Taguchi Grey relational analysis. Appl. Therm. Eng. 103(2016), 1339–1350.
  • [21] Kotcioglu I., Cansiz A., Khalaji M.N.: Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method. Appl. Therm. Eng. 50(2013), 604–613.
  • [22] Chamoli S., Yu P., Yu S.: Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts. Appl. Therm. Eng. 117(2017), 708–724.
  • [23] Zeng M., Tang L.H., M. Lin M., Wang Q.W.: Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl. Therm. Eng. 30(2010), 1775–1783.
  • [24] Taguchi G.: Taguchi Techniques for Quality Engineering. Quality Resources. McGraw-Hill, New York 1987.
  • [25] Ross P.J.: Taguchi Techniques for Quality Engineering. McGraw-Hill, New York,1988.
  • [26] Kline S.J., McClintock F.P.: Describing uncertainties in single sample experiments. Mech. Eng. 75(1953), 3–8.
  • [27] Taguchi G., Konishi S.: Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering. American Supplier Institute, Dearborn 1987.
  • [28] Taguchi G., Jugulum R.: The Mahalanobis Taguchi Strategy. A Pattern Technology System. Wiley, New York 2002.
  • [29] Roy R.K.: Design of Experiments Using the Taguchi Approach. Wiley, Hoboken 2001.
  • [30] Sahu M.K, Matheswaran M.M., Bishnoi P.: Experimental study of thermal performance and pressure drop on a solar air heater with different orientations of arc-shape rib roughness. J. Therm. Anal. Calorim. 144(2021), 1417–1434.
  • [31] Sahu M.K., Matheswaran M.M., Bishnoi P.: Experimental investigation of augmented thermal and performance characteristics of solar air heater ducts due to varied orientations of roughness geometry on the absorber plate. Arch. Thermodyn. 41(2020), 3, 147–182.
  • [32] ASHRAE Standard 93-97. Method of testing to determine the thermal performance of solar collector. 1977.
  • [33] Sahu M.K., Prasad R.K.: Second law optimization and parametric study of a solar air heater having artificially roughened absorber plate. Arch. Thermodyn. 40(2019),2, 107–135.
  • [34] Sahu M.K., Prasad R.K.: Thermohydraulic performance analysis of an arc shape wire roughened solar air heater. Renew. Energ. 108(2017), 598–614.
  • [35] Cortes A., Piacentini R.: Improvement of efficiency of a bare solar collector by means of turbulence promoters. Appl. Energ. 36(1990), 253–261.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff296c7-0443-4deb-80b3-d0a5ab2c9ad2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.