PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of a deterministic ship's safe trajectory planning algorithm from different ships’ perspectives and with changing strategies of target ships

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a ship's safe trajectory planning method verification - the Trajectory Base Algorithm, which is a deterministic approach for real-time path-planning with collision avoidance. The paper presents results of the algorithm’s verification from different ships’ perspectives and with changing strategies of target ships. Results prove the applicability of the algorithm in the Collision Avoidance Module of the Autonomous Navigation System for Maritime Autonomous Surface Ships.
Twórcy
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. ABS: Autonomous Vessels: ABS’ Classification Perspective, http://onlinepubs.trb.org/onlinepubs/mb/2016spring/presentations/jorgensen.pdf, last accessed 2021/02/16.
  • 2. Bratić, K., Pavić, I., Vukša, S., Stazić, L.: Review of Autonomous and Remotely Controlled Ships in Maritime Sector. Trans. Marit. Sci. 8, 2, 253–265 (2019). https://doi.org/10.7225/toms.v08.n02.011.
  • 3. Brekke, E.F., Wilthil, E.F., Eriksen, B.-O.H., Kufoalor, D.K.M., Helgesen, Ø.K., Hagen, I.B., Breivik, M., Johansen, T.A.: The Autosea project: Developing closed-loop target tracking and collision avoidance systems. Journal of Physics: Conference Series. 1357, 012020 (2019). https://doi.org/10.1088/1742-6596/1357/1/012020.
  • 4. BV: Smart ships. Addressing cyber risk, improving performance, https://marine-offshore.bureauveritas.com/sites/g/files/zypfnx136/files/media/document/%231131_BV_4PagesMARINE_BD_1.pdf, last accessed 2021/02/16.
  • 5. DNV GL: The ReVolt. A new inspirational ship concept, https://www.dnvgl.com/technology-innovation/revolt/index.html, last accessed 2021/02/16.
  • 6. EMSA: Annual overview of marine casualties and incidents 2020, http://www.emsa.europa.eu/newsroom/latest-news/item/4266-annual-overview-of-marine-casualties-and-incidents-2020.html, last accessed 2021/02/16.
  • 7. IAI: Katana - USV System, https://www.iai.co.il/p/katana, last accessed 2021/02/16.
  • 8. Kalinowski, A., Małecki, J.: Polish USV ‘EDREDON’ and non-European USV: a comparative sketch. null. 16, 4, 416–419 (2017). https://doi.org/10.1080/20464177.2017.1384441.
  • 9. Kang, Y.-T., Chen, W.-J., Zhu, D.-Q., Wang, J.-H.: Collision avoidance path planning in multi-ship encounter situations. Journal of Marine Science and Technology. (2021). https://doi.org/10.1007/s00773-021-00796-z.
  • 10. Kitowski, Z., Soliński, R.: Application of Domestic Unmanned Surface Vessels in the Area of Internal Security and Maritime Economy — Capacities and Directions for Development. Scientific Journal of Polish Naval Academy. 206, 3, 67–83 (2016). https://doi.org/10.5604/0860889x.1224747.
  • 11. Kongsberg: YARA Birkeland – Autonomous ship project, https://www.kongsberg.com/maritime/support/themes/autonomous-ship-project-key-facts-about-yara-birkeland/, last accessed 2021/02/16.
  • 12. Koszelew, J., Karbowska-Chilinska, J., Ostrowski, K., Kuczyński, P., Kulbiej, E., Wołejsza, P.: Beam Search Algorithm for Anti-Collision Trajectory Planning for Many-to-Many Encounter Situations with Autonomous Surface Vehicles. Sensors. 20, 15, (2020). https://doi.org/10.3390/s20154115.
  • 13. Kuczkowski, Ł., Śmierzchalski, R.: Path planning algorithm for ship collisions avoidance in environment with changing strategy of dynamic obstacles. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., and Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation. pp. 641–650 Springer International Publishing, Cham (2017).
  • 14. Kufoalor, D.K.M., Johansen, T.A., Brekke, E.F., Hepsø, A., Trnka, K.: Autonomous maritime collision avoidance: Field verification of autonomous surface vehicle behavior in challenging scenarios. Journal of Field Robotics. 37, 3, 387–403 (2020). https://doi.org/10.1002/rob.21919.
  • 15. L3 ASV: C-Target 9, https://www.unmannedsystemstechnology.com/company/autonomous-surface-vehicles-ltd/, last accessed 2021/02/16.
  • 16. Lazarowska, A.: A Discrete Artificial Potential Field for Ship Trajectory Planning. Journal of Navigation. 73, 1, 233–251 (2020). https://doi.org/10.1017/S0373463319000468.
  • 17. Lazarowska, A.: A new deterministic approach in a decision support system for ship’s trajectory planning. Expert Systems with Applications. 71, 469–478 (2017). https://doi.org/10.1016/j.eswa.2016.11.005.
  • 18. Lisowski, J.: Game Control Methods Comparison when Avoiding Collisions with Multiple Objects Using Radar Remote Sensing. Remote Sensing. 12, 10, (2020). https://doi.org/10.3390/rs12101573.
  • 19. Lisowski, J., Mohamed-Seghir, M.: Comparison of Computational Intelligence Methods Based on Fuzzy Sets and Game Theory in the Synthesis of Safe Ship Control Based on Information from a Radar ARPA System. Remote Sensing. 11, 1, (2019). https://doi.org/10.3390/rs11010082.
  • 20. Mohamed-Seghir, M.: The fuzzy properties of the ship control in collision situations. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). pp. 107–112 (2017). https://doi.org/10.1109/INISTA.2017.8001141.
  • 21. Munim, Z.H.: Autonomous ships: a review, innovative applications and future maritime business models. null. 20, 4, 266–279 (2019). https://doi.org/10.1080/16258312.2019.1631714.
  • 22. MUNIN: Maritime Unmanned Navigation through Intelligence in Networks, http://www.unmanned-ship.org/munin/about/, last accessed 2021/02/16.
  • 23. MUNIN: Maritime Unmanned Navigation through Intelligence in Networks. D8.6: Final Report: Autonomous Bridge, http://www.unmanned-ship.org/munin/wp-content/uploads/2015/09/MUNIN-D8-6-Final-Report-Autonomous-Bridge-CML-final.pdf, last accessed 2021/02/16.
  • 24. NTNU: Autoferry – Autonomous all-electric passenger ferries for urban water transport, https://www.ntnu.edu/autoferry, last accessed 2021/02/16.
  • 25. NTNU: Autosea – Sensor fusion and collision avoidance for autonomous surface vehicles, https://www.ntnu.edu/autosea/, last accessed 2021/02/16.
  • 26. Rolls-Royce: Remote and Autonomous Ship - The next step, https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf, last accessed 2021/02/16.
  • 27. Rolls-Royce: SVAN – Safer Vessel with Autonomous Navigation, https://breakingwaves.fi/wp-content/uploads/2019/06/SVAN-presentation.pdf, last accessed 2021/02/16.
  • 28. Szlapczynska, J., Szlapczynski, R.: Heuristic Method of Safe Manoeuvre Selection Based on Collision Threat Parameters Areas. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 11, 4, 591–596 (2017). https://doi.org/10.12716/1001.11.04.03.
  • 29. Szłapczynśki, R., Szłapczyńska, J.: Customized crossover in evolutionary sets of safe ship trajectories. International Journal of Applied Mathematics and Computer Science. 22, 4, 999–1009 (2012). https://doi.org/10.2478/v10006-012-0074-x.
  • 30. Szlapczynski, R., Szlapczynska, J.: On evolutionary computing in multi-ship trajectory planning. Applied Intelligence. 37, 2, 155–174 (2012). https://doi.org/10.1007/s10489-011-0319-7.
  • 31. Tam, C., Bucknall, R.: Cooperative path planning algorithm for marine surface vessels. Ocean Engineering. 57, 25–33 (2013). https://doi.org/10.1016/j.oceaneng.2012.09.003.
  • 32. Tam, C., Bucknall, R.: Path-planning algorithm for ships in close-range encounters. Journal of Marine Science and Technology. 15, 4, 395–407 (2010). https://doi.org/10.1007/s00773-010-0094-x.
  • 33. Tianxing-1: Unmanned Surface Vehicle, https://www.defenseworld.net/news/21536/China_Unveils_New_Unmanned_Surface_Vehicle_Tianxing_1#.YCurbKvPxPY, last accessed 2021/02/16.
  • 34. W. Zhang, C. Yan, H. Lyu, P. Wang, Z. Xue, Z. Li, B. Xiao: COLREGS-based Path Planning for Ships at Sea Using Velocity Obstacles. IEEE Access. 9, 32613–32626 (2021). https://doi.org/10.1109/ACCESS.2021.3060150.
  • 35. Wróbel, K., Montewka, J., Kujala, P.: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety. 165, 155–169 (2017). https://doi.org/10.1016/j.ress.2017.03.029.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff25c25-9bb4-4344-b6b5-81b803bc6f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.