PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional order PIλDμ controller with optimal parameters using Modified Grey Wolf Optimizer for AVR system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID (FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic technique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize the FOPID AVR system. The parameters of FOPID, namely, proportional gain (ΚP), the integral gain ( ΚI), the derivative gain ( ΚD), λ and μ have been optimally tuned with the proposed mGWO technique using a novel fitness function. The initial values of the ΚP, ΚI , and ΚD of the FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of λ and μ have been chosen as arbitrary values. The proposed algorithm offers more benefits such as easy implementation, fast convergence characteristics, and excellent computational ability for the optimization of functions with more than three variables. Additionally, the hasty tuning of FOPID controller parameters gives a high-quality result, and the proposed controller also improves the robustness of the system during uncertainties in the parameters. The quality of the simulated result of the proposed controller has been validatedby other state-of-the-art techniques in the literature.
Rocznik
Strony
429--450
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wzory
Twórcy
  • Department of EIE, Assam Energy Institute, Sivasagar (Centre of RGIPT, Jais), Assam-785697, India
  • Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
Bibliografia
  • [1] I. Podlubny: Fractional-order systems and PI𝜆D𝜇 controllers. IEEE Transactions on Automatic Control, 44(1), (1999), 208-214. DOI: 10.1109/9.739144.
  • [2] A. Loverro: Fractional Calculus: History, Definitions and Applications for the Engineer. University of Notre Dame, Department of Aerospace and Mechanical Engineering, Rapport Technique, 2004.
  • [3] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, 1999.
  • [4] D. Baleanu, J.A.T. Machado and A.C.J. Luo (Eds.): Fractional Dynamics and Control. Springer New York, 2012. DOI: 10.1007/978-1-4614-0457-6.
  • [5] A. Oustaloup: La commande CRONE: Commande robuste d’ordre non entier. Hermès, 1991.
  • [6] D. Valério and J. Sá da Costa: Ninteger: a non-integer control toolbox for MatLab. Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, (2004), 208-213.
  • [7] A. Tepljakov, E. Petlenkov and J. Bielikov: FOMCON: Fractional-order modeling and control toolbox for MATLAB. Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems, (2011), no. 4, 684-689.
  • [8] M. Micev, M. Ćalasan and D. Oliva: Design and robustness analysis of an automatic voltage regulator system controller by using equilibrium optimizer algorithm. Computers and Electrical Engineering, 89 (2021), DOI: 10.1016/j.compeleceng.2020.106930.
  • [9] F.N. Deniz, A. Yüce, N. Tan and D. P. Atherton: Tuning of fractional order PID controllers based on integral performance criteria using Fourier series method. IFAC-PapersOnLine, 50(1), (2017), 8561-8566. DOI: 10.1016/j.ifacol.2017.08.1417.
  • [10] P. Anantachaisilp and Z. Lin: Fractional-order surge control of active magnetic bearings suspended compressor. Actuators, 9(3), (2020). DOI: 10.3390/act9030075.
  • [11] Sudalaiandi Sivananaithaperumal and Subramanian Baskar: Design of multivariable fractional order PID controller using covariance matrix adaptation evolution strategy. Archives of Control Sciences, 24(2), (2014), 235-251.
  • [12] Rahul Kumar Saw, Santosh Kumar Verma and Deoraj Kumar Tanti: Performance enhancement of DFIG system using PSO-based optimized PID controller. Proceedings of International Conference on Data Science and Applications, Lecture Notes in Networks and Systems, 288 (2021). DOI: 10.1007/978-981-16-5120-5_45.
  • [13] K. Bingi, R. Ibrahim, M. Noh Karsiti, S. Miya Hassan and V. Rajah Harindran: A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems. Archives of Control Sciences, 28(4), (2018), 635-682. DOI: 10.24425/acs.2018.125487.
  • [14] H. Li, Y. Luo and Y. Chen: A fractional order proportional and derivative (FOPD) motion controller: Tuning rule and experiments. IEEE Transactions on Control Systems Technology, 18(2), (2010), 516-520. DOI: 10.1109/TCST.2009.2019120.
  • [15] R.S. Barbosa, J.A. Tenreiro Machado and I.S. Jesus: Effect of fractional orders in the velocity control of a servo system. Computers & Mathematics with Applications, 59(5), (2010), 1679-1686. DOI: 10.1016/ j.camwa.2009.08.009.
  • [16] D. Xue, Ch. Zhao, Y.Q. Chen, D.X.D. Xue, C.Z.C. Zhao and Y.C.Y. Chen: Fractional order PID control of a DC-motor with elastic shaft: a case study. American Control Conference, (2006), 3182-3187. DOI: 10.1109/ ACC.2006.1657207.
  • [17] S.K. Verma, S. Yadav and S.K. Nagar: Optimized fractional order PID controller for non-minimum phase system with time delay. International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems, (2016). DOI: 10.1109/ICETEESES.2016.7581379.
  • [18] A. Laub: A schur method for solving algebraic Riccati equations. IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, 17 (1978), 60-65. DOI: 10.1109/CDC.1978.267893.
  • [19] M.L Amer, Hanafy H.H. Hassan and Hosam K.M. Youssef: Modified Evolutionary Particle Swarm Optimization for AVR-PID tuning. Selected Papers from: Communications & Information Technology 2008, Circuits, Systems and Signals, (2008), 164-173.
  • [20] H. Ramezanian, S. Balochian and A. Zare: Design of optimal fractionalorder PID controllers using particle swarm optimization algorithm for automatic voltage regulator (AVR) system. Journal of Control, Automation and Electrical Systems, 24(5), (2013), 601-611. DOI: 10.1007/s40313-013-0057-7.
  • [21] S.K. Verma, S. Yadav and S.K. Nagar: Controlling of an automatic voltage regulator using optimum integer and fractional order PID controller. IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI), (2015), 1-5. DOI: 10.1109/WCI.2015.7495525.
  • [22] N. Madinehi, K. Shaloudegi, M. Abedi and H.A. Abyaneh: Optimum design of PID controller in AVR system using intelligent methods. IEEE Trondheim PowerTech, (2011). DOI: 10.1109/PTC.2011.6019196.
  • [23] A. Solanki and A. Rathore: Optimization of PIDA controller for AVR system using GSA. Proceedings on 2018 IEEE 3rd International Conference on Computing, Communication and Security, (2018), 236-239. DOI: 10.1109/CCCS.2018.8586844.
  • [24] M. Zamani, M. Karimi-Ghartemani, N. Sadati and M. Parniani: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), (2009), 1380-1387. DOI: 10.1016/j.conengprac.2009.07.005.
  • [25] A.J.H. Al Gizi, M.W. Mustafa, N.A. Al-geelani and M.A. Alsaedi: Sugeno fuzzy PID tuning, by genetic-neutral for AVR in electrical power generation. Applied Soft Computing Journal, 28 (2015), 226-236. DOI: 10.1016/j.asoc.2014.10.046.
  • [26] D. Cafagna: Fractional calculus: A mathematical tool from the past for present engineers [Past and present]. IEEE Industrial Electronics Magazine, 1(2), (2007), 35-40. DOI: 10.1109/MIE.2007.901479.
  • [27] A. Soukkou and M.C. Belhour: Review, design, optimization and stability analysis of fractional order PID controller. International Journal of Intelligent Systems and Applications, 8(7) (2016), 73-96. DOI: 10.5815/ ijisa.2016.07.08.
  • [28] P. Shah and S. Agashe: Review of fractional PID controller. Mechatronics, 38 (2016), 29-41. DOI: 10.1016/j.mechatronics.2016.06.005.
  • [29] A. Konak, D.W. Coit and A.E. Smith: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), (2006), 992-1007. DOI: 10.1016/j.ress.2005.11.018.
  • [30] J. Jafari-Asl, B. Sami Kashkooli and M. Bahrami: Using particle swarm optimization algorithm to optimally locating and controlling of pressure reducing valves for leakage minimization in water distribution systems. Sustainable Water Resources Management, 6(4), (2020), 1-11. DOI: 10.1007/s40899-020-00426-3.
  • [31] D.K. Geleta and M.S. Manshahia: Gravitational search algorithm-based optimization of hybrid wind and solar renewable energy system. Wiley Online Library, Computational Intelligence, (2020). DOI: 10.1111/coin.12336.
  • [32] J.A. Tenreiro Machado and A. Azenha: Fractional-order hybrid control of robot manipulators. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, (1998), 1 788-793. DOI: 10.1109/ICSMC.1998.725510.
  • [33] S. Yadav, S.K. Verma and S.K. Nagar: Performance enhancement of magnetic levitation system using teaching learning based optimization. Alexandria Engineering Journal, 57(4), (2017), 2427-2433. DOI: 10.1016/J.AEJ.2017.08.016.
  • [34] S. Panda, B.K. Sahu and P.K. Mohanty: Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. Journal of the Franklin Institute, 349(8), (2012), 2609-2625. DOI: 10.1016/j.jfranklin.2012.06.008.
  • [35] D. Puangdownreong: Application of current search to optimum PID. A controller design. Intelligent Control and Automation, 3(4), (2012), 303-312. DOI: 10.4236/ica.2012.34035.
  • [36] A.M. Mosaad, M.A. Attia and A.Y. Abdelaziz: Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Engineering Journal, 10(4), (2019), 755-767. DOI: 10.1016/j.asej.2019.07.004.
  • [37] Z.L. Gaing: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2), (2004), 384-391. DOI: 10.1109/TEC.2003.821821.
  • [38] J-Yi Cao, J. Liang and B-G. Cao: Optimization of fractional order PID controllers based on genetic algorithms. International Conference on Machine Learning and Cybernetics, 9 (2005), 5686-5689. DOI: 10.1109/ICMLC.2005.1527950.
  • [39] B.S. Ahmed, M.A. Sahib, L.M. Gambardella, W. Afzal and K.Z. Zamli: Optimum design of PI𝜆D𝜇 controller for an automatic voltage regulator system using combinatorial test design. PLoS ONE, 11(11), (2016), 1-20. DOI: 10.1371/journal.pone.0166150.
  • [40] M. Karimi-Ghartemani, M. Zamani, N. Sadati and M. Parniani: An optimal fractional order controller for an AVR system using particle swarm optimization algorithm. Large Engineering Systems Conference on Power Engineering, (2007), 244-249. DOI: 10.1109/LESCPE.2007.4437386.
  • [41] S. Mirjalili, S.M. Mirjalili and A. Lewis: Grey wolf optimizer. Advances in Engineering Software, 69(2014), 46-61. DOI: 10.1016/j.advengsoft. 2013.12.007.
  • [42] L.I. Wong, M.H. Sulaiman, M.R. Mohamed and M.S. Hong: Grey wolf optimizer for solving economic dispatch problems. IEEE International Conference on Power and Energy (PECon), (2014), 150-154. DOI: 10.1109/PECON.2014.7062431.
  • [43] R. Precup, R. David and E.M. Petriu: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Transactions on Industrial Electronics, 64(1), (2017), 527-534. DOI: 10.1109/TIE.2016.2607698
  • [44] E. Gupta, A. Saxena and S.C. Tan: Grey wolf optimizer based regulator design for automatic generation control of interconnected power system. Cogent Engineering, 3(1), (2016), DOI: 10.1080/23311916.2016.1151612.
  • [45] S. Saremi, S.Z. Mirjalili and S.M. Mirjalili: Evolutionary population dynamics and grey wolf optimizer, Neural Computing and Applications, 26(5), (2015), 1257-1263. DOI: 10.1007/s00521-014-1806-7.
  • [46] E. Emary, H.M. Zawbaa, C. Grosan and A.E. Hassenian: Feature subset selection approach by gray-wolf optimization. Advances in Intelligent Systems and Computing, 334th ed., Springer, Cham, (2015), 1-13. DOI: 10.1007/978-3-319-13572-4_1.
  • [47] S. Yadav, S.K. Verma and S.K. Nagar: Design of an optimized PID controller for non-minimum phase system with delay. 39th National Systems Conference, (2015), 1-4. DOI: 10.1109/NATSYS.2015.7489096.
  • [48] S. Yadav, S.K. Verma and S.K. Nagar: Optimized PID controller for magnetic levitation system. IFAC-PapersOnLine, 49(1), (2016), 778-782. DOI: 10.1016/j.ifacol.2016.03.151.
  • [49] A. Oustaloup, F. Levron, B. Mathieu and F.M. Nanot: Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), (2000), 25-39. DOI: 10.1109/81.817385.
  • [50] S.K. Verma, S. Yadav and S.K. Nagar: Optimization of fractional order PID controller using grey wolf optimizer. Journal of Control, Automation and Electrical Systems, 28(3), (2017), 314-322. DOI: 10.1007/s40313-017-0305-3.
  • [51] L. Dos Santos Coelho: Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos, Solitons & Fractals, 39(4), (2009), 1504-1514. DOI: 10.1016/j.chaos.2007.06.018.
  • [52] H.M. Hasanien: Design optimization of PID controller in automatic voltage regulator system using Taguchi combined genetic algorithm method. IEEE Systems Journal, 7(4), (2013), 825-831. DOI: 10.1109/JSYST.2012.2219912.
  • [53] T.M.J.A. Abilio: Fractional-order hybrid control of robot manipulators. Proceedings of IEEE Conference on Robotics and Automation, (1985), 602-607.
  • [54] YQ. Chen and B.M. Vinagre: Lecture notes on fractional calculus applications in automatic control and robotics. The 41st IEEE CDC2002 Tutorial Workshop, 2 (2002), 1-310.
  • [55] M.R. Dastranj, M. Rouhani and A. Hajipoor: Design of optimal fractional order PID controller using genetic algorithm and PSO algorithm. International Journal of Computer Theory and Engineering, 3(10), (2012), 2-6. DOI: 10.7763/IJCTE.2012.V4.499.
  • [56] Y. Tang, M. Cui, C. Hua, L. Li and Y. Yang: Optimum design of fractional order PID controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 39(8), (2012), 6887-6896, DOI: 10.1016/j.eswa.2012.01.007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ff1a529-2873-4462-b93a-09e4cc99329c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.