Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Kleinia anteuphorbium L. is a medicinal plant widely utilized in traditional medicine by the Souss-Massa population. This study aimed to investigate the best extraction conditions, including method and solvents, to achieve the highest polyphenol, flavonoid, antioxidant, and antibacterial activities. The polyphenol and flavonoid contents were quantified using spectrophotometric methods, while the antioxidant activity was assessed through Ferric Reducing Power (FRAP) and 2,2-diphenyl-picrylhydrazyl radical (DPPH) scavenging assays. The antibacterial activity was assessed against four pathogenic clinical isolates: P. aeruginosa, E. coli, K. pneumonia, and S. aureus. The phytochemical analysis revealed that all extracts of Kleinia anteuphorbium exhibited high polyphenol and flavonoid contents, along with significant antioxidant activity. Moreover, the extracts showed inhibitory effects against the tested bacteria strains. The GC-MS analysis revealed the existence of abundant bioactive compounds, with potential therapeutic activities. These findings suggest that Kleinia anteuphorbium has promising potential as a medicinal plant.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
171--182
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Laboratory of Plant Chemistry, Organic And Bio-Organic Synthesis, Faculty of Sciences, University Mohammed V, Rabat, Morocco
- amalnaama29@gmail.com
autor
- Laboratory of Plant Chemistry, Organic And Bio-Organic Synthesis, Faculty of Sciences, University Mohammed V, Rabat, Morocco
autor
- Therapeutic Chemistry Laboratory, Department of Drug Sciences, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
autor
- Laboratory of Plant Chemistry, Organic And Bio-Organic Synthesis, Faculty of Sciences, University Mohammed V, Rabat, Morocco
autor
- Laboratory of Plant Chemistry, Organic And Bio-Organic Synthesis, Faculty of Sciences, University Mohammed V, Rabat, Morocco
Bibliografia
- 1. Ait Bouzid, H., Bijla, L., Ibourki, M., Oubannin, S., Elgadi, S., Koubachi, J., Sakar, E. H., & Gharby, S. (2023). Ziziphus lotus (L.) Lam. almonds nutritional potential: Evidence from proximate composition, mineral, antioxidant activity, and lipid profiling reveals a great potential for valorization. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03984-6
- 2. Ait Bouzid, H., Sakar, E.H., Bijla, L., Ibourki, M., Zeroual, A., Gagour, J., Koubachi, J., Majourhat, K., & Gharby, S. (2022). Physical fruit traits, proximate composition, antioxidant activity, and profiling of fatty acids and minerals of wild jujube (Ziziphus lotus L. (Desf.)) Fruits from Eleven Moroccan Origins. Journal of Food Quality, 1, 9362366. https://doi.org/10.1155/2022/9362366
- 3. Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
- 4. Al-Tayawi, T. S., Ade, E. M., & Omer, F. H. (2024). Phytochemical screening and antioxidant properties of alcoholic extract and antibacterial activity of Rosmarinus officinalis L., Leaves. Plant Science Today, 11(3), Article 3. https://doi.org/10.14719/pst.3897
- 5. Barral-Martinez, M., Cassani, L., Carpena, M., G. Pereira, A., Garcia-Oliveira, P., Chamorro, F., Seyyedi Mansour, S., Silva, A., Barroso, F., Cao, H., Prieto, M. A., & Simal-Gandara, J. (2022). Evaluation of the antimicrobial potential of extracts from plants of the family asteraceae. Medical Sciences Forum, 12(1), Article 1. https://doi.org/10.3390/ eca2022-12726
- 6. Ben ElHadj Ali, I., Tajini, F., Boulila, A., Jebri, M.- A., Boussaid, M., Messaoud, C., & Sebaï, H. (2020). Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Industrial Crops and Products, 158, 112951. https://doi.org/10.1016/j.indcrop.2020.112951
- 7. Bernardini, S., Tiezzi, A., Laghezza Masci, V., & Ovidi, E. (2018). Natural products for human health: a historical overview of the drug discovery approaches. Natural Product Research, 32(16), 1926–1950. https://doi.org/10.1080/14786419.2017.1356838
- 8. Chiavari-Frederico, M. O., Barbosa, L. N., Santos, I. C. dos, Silva, G. R. da, Castro, A. F. de, Bortolucci, W. de C., Barboza, L. N., Campos, C. F. de A. A., Gonçalves, J. E., Menetrier, J. V., Jacomassi, E., Gazim, Z. C., Wietzikoski, S., Lívero, F. A. dos R., & Lovato, E. C. W. (2020). Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLOS ONE, 15(1), e0227023. https://doi.org/10.1371/journal. pone.0227023
- 9. Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology, 55(2), 217–225. https://doi.org/10.1016/j. seppur.2006.12.005
- 10. Chrysargyris, A., Petrovic, J. D., Tomou, E.-M., Kyriakou, K., Xylia, P., Kotsoni, A., Gkretsi, V., Miltiadous, P., Skaltsa, H., Soković, M. D., & Tzortzakis, N. (2024). Phytochemical profiles and biological activities of plant extracts from aromatic plants cultivated in Cyprus. Biology, 13(1), Article 1. https://doi.org/10.3390/biology13010045
- 11. Clemensen, A. K., Provenza, F. D., Hendrickson, J. R., & Grusak, M. A. (2020). Ecological implications of plant secondary metabolites - Phytochemical diversity can enhance agricultural sustainability. Frontiers in Sustainable Food Systems, 4, 547826. https://doi.org/doi: 10.3389/fsufs.2020.547826
- 12. Dafallah Bilal, M. A., Hossain, M. A. (2019). Antibacterial activity of different crude extracts of Suaeda maritima used traditionally for the treatment of hepatitis. Biocatalysis and Agricultural Biotechnology, 22, 101383. https://doi.org/10.1016/j.bcab.2019.101383
- 13. Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003
- 14. do Nascimento, K. F., Moreira, F. M. F., Alencar Santos, J., Kassuya, C. A. L., Croda, J. H. R., Cardoso, C. A. L., Vieira, M. do C., Góis Ruiz, A. L. T., Ann Foglio, M., de Carvalho, J. E., & Formagio, A. S. N. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. Journal of Ethnopharmacology, 210, 351–358. https://doi.org/10.1016/j.jep.2017.08.030
- 15. Ezez, D., & Tefera, M. (2021). Effects of Solvents on Total Phenolic Content and Antioxidant Activity of Ginger Extracts. Journal of Chemistry, 1, 5. https://doi.org/10.1155/2021/6635199
- 16. Ferraz, C. R., Carvalho, T. T., Manchope, M. F., Artero, N. A., Rasquel-Oliveira, F. S., Fattori, V., Casagrande, R., & Verri, W. A. (2020). Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules, 25(3), Article 3. https://doi.org/10.3390/ molecules25030762
- 17. Haida, S., Kribii, A., & Kribii, A. (2020). Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. South African Journal of Botany, 131, 151–160. https://doi.org/10.1016/j.sajb.2020.01.037
- 18. Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K.-M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), Article 5. https://doi.org/10.3390/agronomy11050968
- 19. Jaradat, N., Hawash, M., Qadi, M., Abualhasan, M., Odetallah, A., Qasim, G., Awayssa, R., Akkawi, A., Abdullah, I., & Al-Maharik, N. (2022). Chemical markers and pharmacological characters of pelargonium graveolens essential oil from Palestine. Molecules, 27(17), Article 17. https://doi.org/10.3390/ molecules27175721
- 20. Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799. https://doi.org/10.1016/j. redox.2020.101799
- 21. Khare, S., Singh, N. B., Singh, A., Hussain, I., Niharika, K., Yadav, V., Bano, C., Yadav, R. K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63(3), 203– 216. https://doi.org/10.1007/s12374-020-09245-7
- 22. Kirubakari, B., Shanmugapriya, Sangeetha, T., Vijayarathna, S., Chen, Y., Kanwar, J. R., Leow, C. H., Shin, L. N., Swamy, M. K., Subramaniam, S., & Sasidharan, S. (2019). Antibacterial and Antifungal Agents of Higher Plants. In M. S. Akhtar, M. K. Swamy, & U. R. Sinniah (Éds.), Natural Bio-active Compounds: Volume 1: Production and Applications. 493–508. Springer. https://doi.org/10.1007/978-981-13-7154-7_16
- 23. Kocira, A., Świeca, M., Kocira, S., Złotek, U., & Jakubczyk, A. (2018). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences, 25(3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039
- 24. Lamers, J., van der Meer, T., & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/pp.19.01464
- 25. Li, R.-L., Wang, L.-Y., Liu, S., Duan, H.-X., Zhang, Q., Zhang, T., Peng, W., Huang, Y., & Wu, C. (2022). Natural flavonoids derived from fruits are potential agents against atherosclerosis. Frontiers in Nutrition, 9, 862277. https://doi.org/10.3389/ fnut.2022.862277
- 26. López-Perea, P., Guzmán-Ortiz, F. A., Román- Gutiérrez, A. D., Castro-Rosas, J., Gómez-Aldapa, C. A., Rodríguez-Marín, M. L., Falfán-Cortés, R. N., González-Olivares, L. G., & Torruco-Uco, J. G. (2019). Bioactive compounds and antioxidant activity of wheat bran and barley husk in the extracts with different polarity. International Journal of Food Properties, 22(1), 646–658. https://doi.org /10.1080/10942912.2019.1600543
- 27. Metrouh-Amir, H., Duarte, C. M. M., & Maiza, F. (2015). Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Industrial Crops and Products, 67, 249– 256. https://doi.org/10.1016/j.indcrop.2015.01.049
- 28. Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Science and Technology, 38(5), 565–570. https://doi.org/10.1016/j.lwt.2004.07.012
- 29. Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/ s2175-97902019000417129
- 30. Ngo, T. V., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, e9305047. https://doi.org/10.1155/2017/9305047
- 31. Olivia, N. U., Goodness, U. C., & Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences, 7(1), 59. https://doi.org/10.1186/s43094-021-00208-4
- 32. Park, J. S., Rehman, I. U., Choe, K., Ahmad, R., Lee, H. J., & Kim, M. O. (2023). A triterpenoid lupeol as an antioxidant and anti-neuroinflammatory agent: Impacts on oxidative stress in Alzheimer’s disease. Nutrients, 15(13), Article 13. https://doi.org/10.3390/nu15133059
- 33. Raja, R., & Sreenivasulu, R. M. (2015). Medicinal plants secondary metabolites used in pharmaceutical importance - an overview. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 4(4), 436–447. https://doi.org/doi/ full/10.5555/20153163638
- 34. Rather, A. H., Singh, S., & Choudhary, S. (2021). Antibacterial activity of Haematococcus pluvialis crude astaxanthin extract. Journal of Drug Delivery and Therapeutics, 11(2-S), Article 2-S. https://doi.org/10.22270/jddt.v11i2-S.4662
- 35. Rodríguez De Luna, S. L., Ramírez-Garza, R. E., & Serna Saldívar, S. O. (2020). Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal, e6792069. https://doi.org/10.1155/2020/6792069
- 36. Sakar, E. H., Zeroual, A., Kasrati, A., & Gharby, S. (2023). Combined effects of domestication and extraction technique on essential oil yield, chemical profiling, and antioxidant and antimicrobial activities of rosemary (Rosmarinus officinalis L.). https://doi.org/10.1155/2023/6308773
- 37. Sebastian, A. K., & Anto, P. V. (2021). Anti-inflammatory activity of sclerotium stipitatum Berk. Et. Curr. an ethnomedicinal fungus, in chronic and acute animal models of inflammation. Journal of Pharmaceutical Research International, 33(46A), Article 46A. https://doi.org/10.9734/jpri/2021/v33i46A32859
- 38. Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21(7), Article 7. https://doi.org/10.1038/ s41580-020-0230-3
- 39. Srisawat, P., Yasumoto, S., Fukushima, E. O., Robertlee, J., Seki, H., & Muranaka, T. (2020). Production of the bioactive plant‐derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae. 117(7), 2198–2208. https://doi.org/10.1002/bit.27357
- 40. Sun, J., Rutherford, S. T., Silhavy, T. J., & Huang, K. C. (2022). Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 20(4), Article 4. https://doi.org/10.1038/ s41579-021-00638-0
- 41. Surco, F., García, J., Bendezú, M., Laos, D., Panay, J., Valle, M., Palomino, J., Yarasca, P., Loja, B., & Alvarado, A. (2022). Antioxidant and antimicrobial activity of Senecio nutans. Journal of Pharmacy & Pharmacognosy Research. https://doi.org/10.56499/jppres22.1471_10.6.1026
- 42. Vural, N., Algan Cavuldak, Ö., Akay, M. A., & Anlı, R. E. (2020). Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. Journal of Food Measurement and Characterization, 14(3), 1286–1305. https://doi.org/10.1007/s11694-020-00376-6
- 43. World Health Organization. (2022). WHO establishes the Global Centre for Traditional Medicine in India. World Health Organization.
- 44. Yildirim, A., Oktay, M., & Bilaloğlu, V. (2001). The antioxidant activity of the leaves of Cydonia vulgaris. Turkish Journal of Medical Sciences, 31(1), 23–27.
- 45. Zeroual, A., Sakar, E. H., Eloutassi, N., Mahjoubi, F., Chaouch, M., & Chaqrounne, A. (2021). Phytochemical profiling of essential oils isolated using hydrodistillation and microwave methods and characterization of some nutrients in origanum compactum Benth from Central-Northern. Biointerface Res. Appl. Chem, 11, 9358–9371. https://doi.org/10.33263/BRIAC112.93589371
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fee8bb7-9bb0-4c16-a819-ad147c05799e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.