PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implications of inertia for hydroelastic instability of Herschel-Bulkley fluids in plane poiseuille flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effects of inertia on the hydroelastic instability of a pressure- -driven Herschel-Bulkley fluid passing through a two-dimensional channel lined with a polymeric coating. The no-viscous hyperelastic polymeric coating is assumed to follow the two-constant Mooney-Rivlin model. In this work, analytical basic solutions are determined for both the polymeric gel and the fluid at very low Reynolds numbers. Next, the basic solutions are subjected to infinitesimally-small, normal-mode perturbations. After eliminating the nonlinear terms, two 4-th order differential equations are obtained. The equations with appropriate boundary conditions are then numerically solved using the shooting method. The results of the solution show that the inertia terms in the perturbed equations destabilize the pressure-driven Herschel-Bulkley fluid flow. The investigation reveals that the elastic parameter has a stabilizing effect on the flow. Also, based on the obtained results, the yield stress, depending on the power-law index, has a stabilizing or destabilizing effect on the flow. Since in this work the inertia terms are included in the pertinent governing equations, therefore, the results of this study are much more realistic and reliable than previous works in which inertia terms were absent. In addition, unlike the previous works, the present study considers both the shear-thinning and shear-thickening types of fluids. Hence, the results of this work embrace all the fluids which obey the Herschel-Bulkley model.
Rocznik
Strony
1205--1216
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
  • Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
autor
  • Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Babenko V.V., Kozlov L.F., 1972, Experimental investigation of hydrodynamic stability on rigid and elastic damping surfaces, Journal of Hydraulic Research, 10, 383-408
  • 2. Bird R.B., Armstrong R.C., Hassager O., 1987, Dynamics of Polymeric Liquids, 1, John Wiley, New York
  • 3. Chien W.L., Rising H., Ottino J.M., 1986, Laminar and chaotic mixing in several cavity flows, Journal of Fluid Mechanics, 170, 355-377
  • 4. Davies C., Carpenter P.W., 1997, Instabilities in a plane channel flow between compliant walls, Journal of Fluid Mechanics, 352, 205-243
  • 5. Drazin P.G., Reid W.H., 2004, Hydrodynamic Stability, 2nd edit., Cambridge University Press
  • 6. Franjione J.G., Ottino J.M., 1992, Symmetry concepts for the geometric analysis of mixing flows, Philosophical Transactions of the Royal Society A, 338, 301-323
  • 7. Fu T.S., Joseph D.D., 1970, Linear stability of asymmetric flow in channels, Physics of Fluids, 13, 217-222
  • 8. Gad-el-Hak M., 2002, Compliant coatings for drag reduction, Progress in Aerospace Sciences, 38, 77-99
  • 9. Gkanis V., Kumar S., 2005, Stability of pressure-driven creeping flows in channels lined with a nonlinear elastic solid, Journal of Fluid Mechanics, 524, 357-375
  • 10. Jafargholinejad S., 2015, Hydroelastic instability of Herschel-Bulkley fluids in channel flows, Ph.D. dissertation, Islamic Azad University
  • 11. Jafargholinejad S., Najafi M., Sadeghy K., 2015, Hydroelastic instability of viscoplastic fluids in planar channel flow, Journal of the Society of Rheology, Japan, 43, 5, 157-164
  • 12. Jensen K.F., 1999, Micromechanical systems: status, challenges and opportunities, AIChE Journal, 45, 2051-2054
  • 13. Kramer M.O., 1960, Boundary-layer stabilization by distributed damping, Journal of the Aerospace Sciences, 27, 1, 69-69
  • 14. Kramer M.O., 1960, Boundary layer stabilization by distributing damping, Journal of the American Society for Naval Engineers, 72, 25-33
  • 15. Kandlikar S.G., Willistein D.A., Borrelli J., 2005, Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in microchannels, Third International Conference on Microchannels and Minichannels, ASME Paper, ICMM2005-75197, Toronto, Canada
  • 16. Lai W.M., Rubin D., Krempl E., 2010, Introduction to Continuum Mechanics, 4th Ed., Elsevier
  • 17. Lee K.C., Finlayson B.A., 1986, Stability of plane Poiseuille and Couette flow of a Maxwell fluid, Journal of Non-Newtonian Fluid Mechanics, 21, 1, 65-78
  • 18. Muralikrishnan R., Kumaran V., 2002, Experimental study of the instability of the viscous flow past a flexible surface, Physics of Fluids, 14, 2, 775-780
  • 19. Ottino J.M., 1989, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press
  • 20. Pourjafar M., Hamedi H., Sadeghy K., 2015, Stability of power-law fluids in creeping plane Poiseuille: the effect of wall compliance, Journal of Non-Newtonian Fluid Mechanics, 216, 22-30
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fe8dd62-ec2b-48a1-b3eb-53b9ef8664a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.