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Abstract Modern, highly concurrent, and large-scale systems require new methods for

design, testing, and monitoring. Their dynamics and scale require real-time

tools that provide a holistic view of the whole system and the ability to show

a more detailed view when needed. Such tools can help identify the causes of

unwanted states, which is hardly possible with a static analysis or metrics-based

approach. In this paper, a new tool for the analysis of distributed systems in

Erlang is presented. It provides the real-time monitoring of system dynamics on

different levels of abstraction. The tool has been used for analyzing a large-scale

urban traffic simulation system running on a cluster of 20 computing nodes.
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1. Introduction

The fast development of Internet-scale applications that have been observed over the

past few years brings new challenges for software engineers regarding issues that are

difficult to solve using traditional methods. Massively concurrent systems executed in

parallel using clusters of computers or cloud environments form new great challenges

in terms of maintainability, robustness, and effectiveness [26]. The complexity and

dynamics caused by parallel execution make it hard to analyze and understand all of

the phenomena and interactions. This can result in the emergence of issues that are

difficult to detect, reproduce, and eliminate.

Existing technologies and tools allow us to build and deploy systems that are able

to handle millions of simultaneous users. However, the technologies and tools lack

methodologies for guaranteeing that the created systems are robust and reliable, so

the development process must consider these problems (cf. e.g., [24]). These missing

methodologies are related to various steps in the system development process, starting

at the design, continuing through the implementation, debugging, and testing, and

ending at the monitoring and maintaining.

Well-recognized software engineering methods from recent decades (like the

object-oriented approach) have developed standards for the analysis design, docu-

mentation, development, and testing of software. They even include design patterns

for solving typical problems that have been common for several different technolo-

gies and programming languages. The existence of the methodologies have allowed

for unification, simplifying the process of development, making the software quality

controllable, and allowing the maintainability of existing systems [39].

However, the above-mentioned methodologies are hardly suitable for modern,

highly-concurrent, large-scale systems. The domain needs new methodologies, which

will probably emerge as a generalization of different approaches, tools, and techno-

logies created now for solving particular problems [25]. One of the visible trends in

the development of modern systems is the decomposition of processing into small

asynchronous units. This allows us to create systems that possess strongly desired

features: acceptance of partial failures and utilization of modern highly parallel har-

dware. This general approach is used by micro-service-based design and actor-based

systems where loosely coupled fine-grained units cooperate, typically using asynchro-

nous communication. Several attempts for defining more general methods of building

such systems have already been proposed; for example, the supervision trees in Er-

lang/OTP [21] or Akka [20], which allow for explicitly defining the structure of the

dependencies between the elements of a system.

The explicit modeling of the static structure is highly insufficient in ensuring the

high quality of the software. A system composed of thousands of different loosely-

coupled elements that operate for long periods of time can reach states that cannot be

captured by static analysis. The domain of distributed system dynamics modeling and

analysis seems to be one of the areas where basic methods have yet to be developed.

In particular, this concerns the area of monitoring and visualizing system behavior in
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order to detect performance problems, locate the cause of any anomalies, or just gain

insight into how the system responds to particular stimuli. Traditional methods based

on monitoring dashboards or the visualization of system traces do not scale well for

massively concurrent systems and fail to provide the required understanding of how a

system behaves. Consequently, new approaches in the area of system testing and mo-

nitoring are emerging, such as those pioneered in Netflix (dubbed Chaos Engineering

[22]) and Intuition Engineering [33]. At the heart of these new methods is the premise

that, in order to properly understand the operation of a massively concurrent system,

we need a holistic view of its state available in real-time so that we can observe system

dynamics ? in particular, how it responds to changing conditions such as failures. An

offline analysis of system monitoring data or the real-time visualization of individual

system parts are no longer sufficient.

In this paper, we present a visualization tool for the analysis of the dynamics of

systems written in Erlang. This tool, called the Erlang Performance Lab (ErlangPL),

allows for the real-time monitoring of a distributed system (application agnostic),

integration of various metrics, and real-time presentation of the collected data using

a set of modern visualization techniques. In its current state, the tool focuses on me-

asuring the communication intensity between the processes and nodes. It certainly

does not solve all of the problems related to understanding distributed system dyna-

mics; however, we believe that it is an important step towards defining useful methods

in this area.

The presented tool has been tested using a distributed simulation system that was

deployed on a cluster of computers. We have a supercomputer available and ready to

be tested; however, the tool requires an external connection to a web browser, which

is impossible in the supercomputing environment we typically use (the Prometheus

cluster of the Academic Computing Center Cyfronet AGH). Therefore, we had to

limit ourselves to testing a cluster of 20 computers in order to present the tangible

results in this paper.

In this paper, a distributed system monitoring tool is presented, applied to vi-

sualization of the events happening in a distributed traffic simulation system. In

particular, efficiency-related issues are visualized, based on a test-bed of 20-computer

cluster. Various conclusions from the experiments are presented in the paper, to-

gether with several new ideas for the further development of the tool that will be

implemented in the future.

2. Monitoring of Distributed Systems

Performance monitoring and visualization is one of the main methods of gaining in-

sight into the behavior of parallel and distributed systems [28]. Typical visualization

techniques include the presentation of system event traces on Gantt charts, graphs

(showing topology), or more advanced charts such as treemaps. These techniques

become ineffective for large-scale systems, so data reduction techniques (e.g., aggre-

gation or clustering) are applied in order to improve the scalability of the visualiza-
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tion method. However, such data reduction may easily lead to information loss [30].

Schnorr et al. (2012) proposed an approach based on the hierarchical aggregation of

monitoring data and treemap diagrams to achieve a scalable performance visualiza-

tion of parallel applications consisting of thousands of processes [35]. This approach

is, however, best-suited for visualizing the status of individual processes (but not the

traffic between them).

In-memory computing platforms such as Hazelcast [9], Infinispan [10], or Apa-

che Ignite [1] support advanced distributed computing capabilities. Hazelcast collects

many standard monitoring metrics such as CPU and memory utilization as well as

read/write throughputs for various objects of the system (nodes and data structures).

The metrics can be visualized in real time, typically on time-series plots. Infinispan

and Ignite expose the monitoring metrics through RMX, but no visualization dashbo-

ards are provided by default.

The actor-based systems implemented with frameworks like Akka or Erlang/OTP

have a specific model of computation based on asynchronous messages and lock-free

concurrency. Consequently, monitoring such systems must be based on specific actor-

centric metrics focusing on actor utilization and communication between the actors

[34]. The existing monitoring tools for Akka include Lightbend monitoring [12] and

Kamon [11]. These tools focus on mailbox metrics (size and message waiting time)

and message-processing time. However, actor utilization or message exchange metrics

are not supported. A set of tools for the operations and maintenance of Erlang clusters

is available in WombatOAM [19] (e.g., visualization of system topology, charts with

various metrics, dashboard with notifications, and alarms).

Intuition Engineering [33], a term coined by Netflix, is an approach wherein

a holistic state of a system is visualized in real-time. So far, Netflix has published

the Vizceral tool [18] that visualizes traffic between system nodes at different levels

of detail (global-, regional-, and service-level). The main idea of this approach is to

first provide a tool enabling one to understand the ”correct” system behavior and its

anomalies, and second ? to quickly locate the potential sources of a problem in case

a failure or performance issues occur. The latter feature is essential for quick problem

diagnosis because, even if the system collects dozens of metrics, it gives no hint as to

where to first look for the problem. Originally designed for Netflix, the approach has

also been considered useful for smaller-scale systems [27].

Percept2 [31] and RefactorErl [37] are tools that approach analysis via the use of

static data. Percept2 allows the user to visualize and profile parallel Erlang applica-

tions. It is based on Erlang’s built-in ability to trace and save events from processes.

Collected traces are analyzed offline, and the results are presented via a web-based

interface. However, it is limited to profiling applications running on a single multicore

machine rather than a cluster of machines (which is our main focus). RefactorErl was

designed to model the relationships between Erlang processes. This tool is capable of

detecting both explicit (e.g., process hierarchy and communication) and hidden rela-

tionships (e.g., via file operations or ETS tables), which allows developers to better
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comprehend the code on which they are working. Unfortunately, RefactorErl is not

able to detect possible bottlenecks or undesired system states, which often prove to

be much harder to handle and have a disastrous impact on the application.

3. Erlang Performance Lab

The ErlangPL tool (http://www.erlang.pl/) aims at supporting software engineers

working on systems running on top of a BEAM virtual machine (a.k.a. Erlang Run-

time System [5]). The ErlangPL project was open-sourced in February of 2017, and its

source code is available on the GitHub repository https://github.com/erlanglab.

It is available as a command line tool, with a graphical user interface (GUI) rendered

in any modern browser. The pre-compiled executable is compatible with the opera-

ting systems on which the BEAM is installed. Despite having Erlang in its name,

it can support systems running on top of the BEAM virtual machine regardless of

the programming language used for implementation (e.g., Erlang [3], Elixir [2], or

LFE[13]).

In order to access the GUI, one needs to open a terminal and start erlangpl from

the command line, providing the name of the node to be inspected. Once started,

ErlangPL tries to connect over the Erlang Distributed protocol to the entire cluster

to which the provided node name belongs. If successfully connected to a cluster,

an HTTP service is started so that one can navigate a web browser through it. The

browser renders a GUI implemented in React.js [17]. The GUI consists of several tabs,

each visualizing a different aspect of the system. We describe views dedicated to the

network traffic between the nodes and message passing between the processes. At the

time of writing, there are also other views available (e.g,. rendering a supervision tree

or displaying a dashboard with metrics and charts). Those other views are similar to

already-existing tools like observer [15] and are not covered in this paper.

3.1. Network traffic visualizations

Traffic visualizations are divided into three levels of detail. The first-level view shows

ingress and egress traffic between the inspected node and the cluster of the connected

nodes. Nodes are represented as circles, and the centrally located one refers to the

inspected node (see Figure 1). In the central circle, there is a counter with the number

of messages processed every five-second period. The counter is updated every five

seconds. To visually represent the traffic, animations of particles flowing from and to

the inspected node are rendered. The direction in which the particles flow indicates

ingress or egress. The number of animated particles depends on the value of the

counter, so the more messages processed, the more particles produced. In the other

circles, there is a percentage value that represents the number of messages processed

by a node divided by the counter from the central circle.

This high-level overview can help us understand whether the processes running

on the nodes send messages to the remote processes and how such traffic is distributed

across the cluster.

http://www.erlang.pl/
https://github.com/erlanglab
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Clicking on a circle opens the second-level traffic view. The view renders traffic

between each pair of nodes within the cluster. A similar animation technique as the

one described above is used, so it can help understand the traffic patterns. For ex-

ample, a visualization of distributed database Mnesia [14] executing different types of

operations can help understand which operations require more intensive communica-

tion between the nodes and how the traffic is balanced across the cluster [36]. In the

scenarios where Mnesia asynchronously replicates the writes from the node executing

operations to all other nodes, the animations show that the messages are only sent

in one direction. On the other hand, in a visualization for scenarios where Mnesia

executes transactions requiring a two-phase commit, there are a higher number of

messages exchanged between the nodes, and the messages are sent in both directions

(to and from the node on which the transaction was initiated). These differences in

traffic patterns can be easily spotted when observing the animations and comparing

the counters in the circles.

Clicking on any of the nodes in the second level transforms the view to the third

level, in which all of the measurement-related details of that specific node are shown.

Figure 1. First-level cluster traffic view

3.2. Message-passing visualizations

The communication between the processes running on the BEAM is based on message

passing. Each process has an unbound mailbox, and any other process can send it

a message. This can lead to overload conditions when more messages are produced
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than consumed. A common technique to identify a potential bottleneck related to

mailbox overload is to look for processes with a long message queue. Such a technique

can indeed help find overloaded processes, but it does not give a more holistic view

of where the possible sources of such loads are.

Clicking on one of the nodes in the first-level traffic view described in the previous

section opens the second-level view, where the messages passed between the Erlang

ports and processes are visualized as shown in Figure 2. In this view, the circles

represent the ports and processes running on the clicked node, and the animated par-

ticles represent messages. The direction in which the particles flow indicates whether

a process is sending or receiving. This view can suggest which processes or ports are

potential bottlenecks; e.g., if many processes pass messages to a single process or if

one process is a source of messages passed to many other processes.

Figure 2. Second-level message-passing view

3.3. Implementation details

Command line tool erlangpl is implemented as a self-contained escript [8], meaning

that all assets required to render the GUI and all non-standard .beam files required

to execute the program are compressed and appended to the shell script. When

executed, the script extracts its assets and calls the main function. Then, Erlang

Distributed is started by calling the net_kernel:start/1 function, and the node is

registered in the local Erlang Port Mapper Daemon [4] as erlangpl@127.0.0.1. The

default node name can be changed by passing the relevant argument to the script.



Ea
rly
bi
rd

146 Michal Slaski et. al.

After the newly created node connects to the observed cluster, it spawns a remote

process named epl tracer on each of its nodes. The process is used to gather trace

events and serve as a proxy for remote function calls. The process is linked to the

parent node, so it is killed as soon as the ErlangPL program is terminated.

The metrics needed to render the traffic visualizations described in Section 3.1

are gathered by polling the observed nodes every five seconds. Each node executes

net_kernel:nodes_info/0, and the results are gathered on the erlangpl node, where

they are processed and made available for the front-end program rendering the GUI.

The metrics needed to render the message visualizations described in Section 3.2

are gathered by tracing all processes with the trace flags of types ’send’ and ’receive’

(see Erlang code listing below).

TraceFlags = [send, ’receive’, procs, timestamp],

erlang:trace(all, true, TraceFlags)

For each type of received trace event, a relevant counter is stored in a local ETS

[6] table. Counters are polled every five seconds and processed further on the erlangpl

node, where they are made available for the GUI.

In systems where the processes communicate intensively with each other, the

above tracer settings can cause many trace events to be generated. As a result,

the overhead related to event processing and counter aggregating can overwhelm

the epl tracer process, and the counter’s polling can timeout. In future versions of

ErlangPL, this issue can be addressed by implementing the Erlang tracer behavior [7]

as NIFs.

4. Distributed Traffic Simulation System

The distributed system analyzed in this paper is a microscopic urban traffic simulator

that was presented in detail in [38]. This section summarizes only the crucial aspects

that are interesting in the context of the presented tool.

Microscopic traffic simulation is a rapidly developing domain, used in various

problems related to autonomous cars and urban traffic management. It requires high

accuracy that imposes complex and detailed models of traffic as well as large-scale

– a rapid and accurate simulation of whole cities is a desired possibility. These

factors make the problem very computationally demanding; therefore, it is suitable

for execution on highly-parallel hardware. However, the problem of distributing such

a computation on several computing nodes is not straightforward.

The simulation model implemented in the system is an extended version of the

well-known Nagel-Schreckenberg approach [32]. It uses discrete representation of all

model parameters—space, time, and velocity. It introduces several improvements over

the classic model, which make it more realistic in urban traffic modeling:

• multi-lane roads,

• lane change action,

• road crossings with common cells,
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• traffic lights or right-of-way rules.

A visual representation of a fragment of the modeled road system is presented in

Figure 3.
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Figure 3. Visual representation of five crossroads in urban road system model. Central

crossroad communicates with four neighboring crossroads only.

Each lane is composed of a given number of cells that represent the possible

locations of the cars. Each cell can be either occupied by one car or free. Each

car is characterized by its current velocity, maximum acceleration, and probability of

turning at a crossroad. The algorithm of updating the simulation state analyzes all

cells and moves all cars forward (if possible) according to their characteristics. The

sequential version of the algorithm is rather simple.

In order to parallelize the computations, the simulated space was split into sub-

spaces covering single crossroads. Each crossroad is updated in parallel in a dedicated

process, and the results of the update are sent to the processes responsible for the

neighboring crossroads. The communication between the processes is limited to the

four neighbors only. There is no need for a centralized synchronization of the compu-

tations, which makes the algorithm rather unique.

The time required by each of the processes to update the crossroad may vary

significantly. This depends strongly on the number of cars present in the crossroad.

The computations are synchronized using a simple mechanism of waiting for their

neighbors to finish the previous step. This approach guarantees the correctness of the

simulation without any centralized time control.
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The simulation makes it possible to verify the influence of the controlled desyn-

chronization of the computations on scalability. Desynchronization is defined as the

ability to compute a few further steps of a simulation without the states from the

neighboring crossroads. With simple assumptions, this method also allows for the

correct simulation.

Figure 4. Scalability of simulation system running on supercomputer [38].

The simulator is implemented in Erlang and designed for execution on a cluster

of computers running connected Erlang virtual machines. It was tested on the Pro-

metheus computer, which is a part of the PL-Grid infrastructure [16]. It offers 2232

computing nodes with 24 physical cores each. The simulation used up to 800 nodes,

which is 19,200 cores working simultaneously on a single task. Although the scalabi-

lity results are satisfactory (Figure 4), we cannot claim that we fully understand the

reasons for particular phenomena observed in the results.

A very interesting aspect of the method is the distribution of the tasks between

the available computing nodes. Obviously, the cost of communication between dif-

ferent nodes is higher than the cost of sending a message to the same node. Three

methods were tested:

1. random assignment,

2. scatter assignment, where the grid of the crossroads was traversed systematically,

and each crossroad was assigned to the next node in a cyclic list,

3. bulk assignment, where the previous method assigned a fixed number of conse-

cutive crossroads to one node.
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The results presented here were collected using the third task assignment method;

the first two methods gave worse results.

5. Analysis of Distributed System Dynamics

The presented traffic simulation system was analyzed using the ErlangPL tool in

several different configurations. The results presented in this section show that the

tool is easy to use, does not affect the tested system, and makes the investigation of

various aspects of its behavior possible.

The tests were carried out using a cluster of 20 modern physical computers con-

nected to a fast local area network. Each computing node was equipped with four

physical cores of an Intel i5 CPU. The computer was run under the control of Linux

OS and used Erlang 19.3.

The integration of the ErlangPL with the traffic-simulation systems was straig-

htforward. Once the system was started, the ErlangPL tool could be connected to

any of the nodes, and the tracing would start automatically. The first results were

available on the web interface after a few seconds – the interface started to show the

communication intensity between the nodes in real-time.

The first set of tests involved three computing nodes and aimed at verifying the

ability of detecting and presenting the differences in communication intensity between

the computing nodes. A simulation of 20 crossroads was started on 3 nodes only, which

resulted in an uneven assignment of tasks to the nodes. Figure 5 shows the visua-

lization of communication between the nodes with three different task-distribution

methods.

The visualization displays five Erlang virtual machines in the cluster, but only

three of them are involved in the simulation. Two others represent the node used by

the simulation to initialize the tasks and the node of ErlangPL. It is clearly visible

that the intensity of communication between the three nodes taking part in the simu-

lation is high and differs between the task-distribution methods, which explains the

differences in the overall performance. The bulk method requires significantly fewer

messages and gives the best performance; however, it seems that it is still not the

optimal solution. Figure 5 reveals that one pair of nodes exchanges fewer messages

than the other two pairs, which suggests that the tasks are not equally distributed in

the system. This is an identified potential field for improvement.

In order to verify the possibility of visualizing larger numbers of nodes, a set of

tests involving all 20 computers were carried out. The simulation task was far bigger

than before – there were 320 crossroads in the model. ErlangPL managed to analyze

and display the network of connections after a few seconds and fluently presented

the simulation initialization and further processing. Selected frames are presented in

Figure 6.

Only the results of the bulk task-distribution method are presented. Visualization

of all 20 nodes can be hard to read for an inexperienced user. Therefore, ErlangPL
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Figure 5. ErlangPL visualization of three nodes running 20 simulation tasks with different

task-distribution methods: a) random; b) scatter; c) bulk
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Figure 6. ErlangPL visualization of 20 nodes running common simulation tasks.

provides a very simple filtering (presented on the bottom of Figure 6) that is enabled

by mouse movements. This view shows only the selected node and its communication

with the other nodes, which allows us to identify cooperating nodes and estimate the

communication intensity between them. In the case of our simulation, this intensity

turned out to be rather irregular.

Remarkably, there was no overhead in the monitoring system on the simula-

tion performance. The mechanism that collects information about the communi-

cation between nodes is very lightweight, and it had no measurable impact on the

computationally-intensive task.
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The visualization of a cluster structure and communication between the nodes

does not solve any issues automatically. However, it provides a significant amount of

information in a way that makes it possible to be analyzed by a human being. The

real-time presentation of the changes in communication intensity and visual represen-

tation makes it possible to draw conclusions about the reasons and effects, which can

lead to identifying the problems in large-scale highly parallel systems.

The tests revealed a number of possible improvements that might be useful and

could provide further information. This included CPU and memory utilization on the

nodes, lengths of the message queues, or improved node layout creation.

6. Conclusions and Further Work

Modern, highly-concurrent, large-scale systems require new methodologies for solving

issues caused by their complexity and high dynamics. New methods are needed to

understand the phenomena taking place in such systems. It seems that the problem

can be addressed with an approach based on providing a holistic view of a system to

an expert. The proper real-time visualization of the changing states of a system can

lead to the identification of potential problems.

The presented tool, Erlang Performance Lab, provides a set of visualizations on

different levels of abstractions that can be quickly switched and analyzed in real time.

The tool works almost transparently for the monitored system, and it is very simple

to configure and use. We hope that it will become one of the basic tools used by

distributed system developers.

The performed tests showed several interesting directions for the further deve-

lopment of the created tool. Enriching the existing visualizations with additional

data seems very important. A more-sophisticated analysis of the collected data with

user-defined functions would also be interesting.

The planned future work consists of applying the constructed monitoring tool

for monitoring other simulation systems (e.g., [29]) or metaheuristic computing sy-

stems (e.g., [23]). The visualization provided will help in the diagnosis of technical

communication-related issues, but it will also help in the observation of certain al-

gorithmic features, such as the migration phenomenon in the parallel evolutionary

algorithms as well as the relationship between them (e.g., influence of migration on

the performance of the system).
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