PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical characterization of millimetric agarose spheres using a resonant technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a methodology for the mechanical characterization of agarose millimetric spheres using resonant principles. Detection of the modes of vibration was conducted using a low-cost experimental setup based on an electret microphone adapted with a thin latex elastic membrane for the sensing stage and a piezoelectric actuator driven by a conventional transformer for the excitation stage. The identification of vibration modes is supported through an ANSYS Finite Element model of the experimental setup. Experimental and numerical results demonstrate that two modes of vibration, known as Quadrupole and Octupole, appear in the amplitude spectrum and can be used to obtain stiffness values for the samples. Following this approach, Young’s modulus of 209 ± 19.80, 338 ± 35.30 and 646 ± 109 kPa for 2%, 3% and 4% agarose millimetric spheres were calculated.
Rocznik
Strony
217--233
Opis fizyczny
Bibliogr. 31 poz., rys. kolor.
Twórcy
autor
  • Department of Mechanical Aerospace and Civil Engineering, The University of Manchester, M139PL UK
autor
  • Department of Mechanical Aerospace and Civil Engineering, The University of Manchester, M139PL UK
autor
  • Department of Mechanical Aerospace and Civil Engineering, The University of Manchester, M139PL UK
autor
  • Manchester Institute of Biotechnology, The University of Manchester, Princess St, Manchester, M1 7DN, UK
autor
  • Manchester Institute of Biotechnology, The University of Manchester, Princess St, Manchester, M1 7DN, UK
  • University of the Americas (UDLAP), San Andrés Cholula, Puebla, Mexico
  • University of the Americas (UDLAP), San Andrés Cholula, Puebla, Mexico
Bibliografia
  • 1. N.D. Leipzig, M.S. Shoichet, The effect of substrate stiffness on adult neural stem cell behavior, Biomaterials, 30, 36, 6867–6878, 2009.
  • 2. N.L. Halliday, J.J. Tomasek, Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro, Experimental Cell Research, 217, 1, 109–117, 1995
  • 3. R.J. Pelham, Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proceeding of the. National Academy of Sciences, 94, 25, 136610–13665, 1997.
  • 4. A.H. Henni, C. Schmitt, I. Trop, G. Cloutier, Shear wave induced resonance elatography of spherical masses with polarized torsional waves, Applied Physics Letters, 100, 13, 1337021–1337025, 2012.
  • 5. J. Domke, M. Radmacher, Measuring the elastic properties of thin polymer films with the atomic force microscope, Langmuir, 14, 12, 3320–3325, 1998.
  • 6. E. Kimmel, K. Peleg, S. Hinga, Vibration modes of spheroidal fruits, Journal of Agricultural Engineering Research, 52, 201–213, 1992.
  • 7. E. Macrelli, A. Romani, R.P. Paganelli, E. Sangiorgi, M. Tartagni, Piezoelectric transducers for real-time evaluation of fruit firmness. Part II: Statistical and sorting analysis, Sensors Actuators A Physical, 201, 497–503, 2013.
  • 8. G. Rajeshkumar, V. Hariharan, Free vibration characteristics of phoenix Sp fiber reinforced polymer matrix composite beams, Procedia Engineering, 97, 687–693, 2014.
  • 9. M. Thomasová, P. Sedlák, H. Seiner, M. Janovská, Young’s moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite, Scripta Materialia, 101, 24–27, 2015.
  • 10. L. Horace, On the vibrations of an elastic sphere, Proceedings of the London Mathematical Society, 1-13, 1, 189–212, 1881.
  • 11. A.C. Eringen, E.S. Suhubi, Elastodynamics, Vol. 2: Linear Theory, Academic Press Inc., New York, 1975.
  • 12. L. Saviot, D.B. Murray, Longitudinal versus transverse spheroidal vibrational modes of an elastic sphere, Physical Review B: Condensed Matter and Materials Physics, 72, 20, 1–6, 2005.
  • 13. A. Yaoita, T. Adachi,A. Yamaji, Determination of elastic moduli for a spherical spec- imen by resonant ultrasound spectroscopy, Non Destructive Testing International, 38, 7,554–560, 2005.
  • 14. Q. Chen, B. Suki, K.-N. An, Dynamic mechanical properties of agarose gels modeled by a fractional derivative model, Journal of Biomechanical Engineering, 126, 5, 666–671,2004.
  • 15. D.D. Joye, G.W. Poehlein, C.D. Denson, A bubble inflation technique for the measurement of viscoelastic properties in equal biaxial extensional flow, Transactions of the Society of Rheology 16, 3, 421–445, 1972.
  • 16. E.S. Drexler, A.J. Slifka, J.E. Wright, C.N.McCowan, D.S. Finch, T.P. Quinn, An experimental method for measuring mechanical properties of rat pulmonary arteries verified with latex, Journal of Research of the National Institute of Standard and Technology, 108, 3, 183–191, 2003.
  • 17. A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, R.G. Leisure , Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids, Physical Review B: Condensed Matter and Materials Physics, 183, 1-2, 1–24, 1993.
  • 18. D.B. Fraser, R.C. Le Craw, Novel method of measuring elastic and anelastic properties of solids, Review of Scientific Instruments, 35, 9, 1113–1115, 1964.
  • 19. Y. Mu, A. Lyddiatt, A.W. Pacek, Manufacture by water/oil emulsification of porous agarose beads: effect of processing conditions on mean particle size, size distribution and mechanical properties, Chemical Engineering and Processing: Process Intensification, 44, 10, 1157–1166, 2005.
  • 20. R. Mercadé-Prieto, Z. Zhang, Mechanical characterization of microspheres capsules, cells and beads: a review, Journal of Microencapsulation, 29, 3, 277–285, 2012.
  • 21. Y. Yan, Z. Zhang, J.R. Stokes, Q.Z. Zhou, G.H. Ma, M.J. Adams, Mechanical characterization of agarose micro-particles with a narrow size distribution, Powder Technology, 192, 1, 122–130, 2009.
  • 22. J. Rauh, F. Milan, K.-P. Günther, M. Stiehler, Bioreactor systems for bone tissue engineering, Tissue Engineering Part B Review, 17, 4, 263–280, 2011.
  • 23. A.B. Yeatts, J.P. Fisher, Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress, Bone, 48, 2, 171–181, 2011.
  • 24. A. Birgersdotter, R. Sandberg, I. Ernberg, Gene expression perturbation in vitro A growing case for three-dimensional (3D) culture systems, Seminars in Cancer Biology, Special Issue, 15, 5, 405–412, 2005.
  • 25. B.A. Justice, N.A. Badr, R.A. Felder, 3D cell culture opens new dimensions in cell-based assays, Drug Discovery Today, 14, 1–2, 102–107, 2009.
  • 26. M.E. Bregenzer, E.N. Horst, P. Mehta, C.M. Novak, T. Repetto, C.S. Snyder, G. Mehta, Tumor modeling maintains diverse pathology in vitro, Annals of Translational Medicine, 7, S8, S262–S262, 2019.
  • 27. Y. Cao, S. Yang, D. Zhao, Y. Li, Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering, Journal of Orthopaedic Translation, 23, 2020.
  • 28. Z.-Y. Zhang S.H. Teoh, E.V. Teo, M.S.K. Chong, C.W. Shin, F.T. Tien, M.A. Choolani, J.K.Y. Chan, A comparison of bioreactors for culture of fetal mes-enchymal stem cells for bone tissue engineering, Biomaterials, 31, 33, 8684–8695, 2010.
  • 29. J.M. Walker, A.M. Myers, M. Schluchter, V.M. Goldberg, Nondestructive eval-uation of hydrogel mechanical properties using ultrasound, Annals of Biomedical Engineer-ing, 39, 10, 2521–2539, 2011.
  • 30. H. Xu, S.F. Othman, R.L. Magin, Monitoring tissue engineering using magnetic reonance imaging, Journal of Bioscience and Bioengineering, 106, 6, 515–527, 2008.
  • 31. S. Wu, X. Liu, K. W.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Materials Science & Engineering R: Reports, 80, 1–36, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fe19826-6274-4831-a7a9-3a7e6b7fbd99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.