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This paper presents a methodology for the mechanical characterization of
agarose millimetric spheres using resonant principles. Detection of the modes of
vibration was conducted using a low-cost experimental setup based on an electret
microphone adapted with a thin latex elastic membrane for the sensing stage and
a piezoelectric actuator driven by a conventional transformer for the excitation stage.
The identification of vibration modes is supported through an ANSYS Finite Element
model of the experimental setup. Experimental and numerical results demonstrate
that two modes of vibration, known as Quadrupole and Octupole, appear in the am-
plitude spectrum and can be used to obtain stiffness values for the samples. Following
this approach, Young’s modulus of 209 ± 19.80, 338 ± 35.30 and 646 ± 109 kPa for
2%, 3% and 4% agarose millimetric spheres were calculated.
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Notation

ξ spheroidal normalised frequency,
η torsional normalised frequency,
j spherical Bessel function of the second type,
v Poisson’s ratio,
k system stiffness,
km membrane stiffness,

lf0 experimentally obtained spheroidal modes of vibration,
E Young’s modulus,
a sphere radius,
ρ sphere density,
PZT Lead Zirconate Titanate based piezoelectric material,
σ equibiaxial stress,
t0 membrane initial thickness,
C0 initial reference length,
C bubbles arc length,
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P inflation pressure,
r radius of curvature,
δ membrane deflection,
R1–R3 1st, 2nd and 3rd peaks of resonance appearing in the amplitude spectra

experimentally,
EOP Young’s modulus of elasticity calculated using the Octupole mode of vibration,
AFM Atomic Force Microscope,
msample mass of the spherical sample.

1. Introduction

The stiffness of millimetre and centimetre sized bodies is an impor-
tant parameter of study in tissue engineering for the construction of hydrogel-
based scaffolds and in cancer research for the mechanical characterization of tu-
mours removed from patients. In tissue engineering, it is known that the stiffness
of gel-based scaffolds influences parameters of the cell culture such as locomo-
tion, growth, differentiation and proliferation [1–3]. In cancer research, new tools
for the early detection of cancer, based on the indirect measurement of the stiff-
ness of spherical masses inside the human body have been recently proposed [4].
In both cases, materials are known to behave viscoelastically, and for this rea-
son, their full quantitative mechanical characterization requires either excessive
manipulation or even destruction of the sample, for example when carrying out
a rheological test, thus, eliminating the possibility of monitoring the stiffness evo-
lution during specific experiments such as cell culture or tumour development.

An alternative to assess the stiffness of viscoelastic materials is by assuming
small deformations and therefore a purely elastic behaviour. This assumption
has been widely accepted in cell mechanics, for example when testing biologi-
cal cells using the indentation test carried out in the Atomic Force Microscope
(AFM) [5], in which, researchers are able to represent the stiffness of complex
systems with a reduced number of variables named equivalent Young’s modulus
and Poisson’s ratio. In addition, knowing that resonances of linear elastic bodies
depend only on their geometry, mass and stiffness properties, the mechanical
characterization of samples of known geometry and density using a methodology
based on a vibration test is possible.

Some of the main advantages of carrying out a vibration test include min-
imal deformation of the sample during the test, non-destructive nature of the
characterization as well as the possibility to adapt the testing setup in other
experiments, for example in bioreactors flasks for tissue engineering. This test
is well known, and has been in use for example in the food industry for the
classification of fruit and vegetables [6–7], and in the materials science industry
for the mechanical characterization of materials [8, 9].

This paper explores the possible use of a vibration test to carry out a non-
destructive mechanical characterization of soft bodies in the millimetre range.
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Since the study of vibrations of finite bodies made of soft materials is not as
common as the study of hard materials, this paper is preliminary research car-
ried out on spheres of millimetric size made of agarose. Moreover, in order to
reduce the number of variables involved, the experiments were carried out in air
instead of a liquid environment, and the identification of modes of vibration was
supported both theoretically and through a Finite Element (FE) study.

2. Vibrations of an elastic sphere

The problem of finding the resonant frequencies of an ideal elastic sphere was
first solved by Lamb [10]. He found that the solution of the problem only depends
on sphere diameter, density, shear modulus and Poisson’s ratio. Lamb classified
the resonant frequencies in two categories, named torsional and spheroidal. The
torsional modes are characterised by displacements occurring only in the theta
and phi directions (in a spherical coordinates system) and by their indepen-
dence with the Poisson’s ratio value. On the other hand, spheroidal modes are
characterized by displacements in all directions. As previously reported by Erin-

gen [11] and Saviot [12], the resonances of an elastic sphere are conveniently ex-
pressed as normalised frequencies for the spheroidal (ξ) and torsional (η) modes
whose values correspond to the roots of Eq. (2.1), given by:
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Fig. 1. Normalized torsional and spheroidal frequencies. Notice that torsional modes (grey
dashed lines) do not depend on Poisson’s ratio and spheroidal modes behave in a linear

fashion. Continuous lines correspond to the fitted functions of the roots of Eq, 2.1 (dots).
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where j represents the spherical Bessel functions of the second type, which can
be solved for different values of l by assuming that the material is isotropic
(

η
ξ

=
√

1−2v
2−2v

)

The behaviour of the lowest normalised modes (l = 2, 3, 4) are

shown in Fig. 1.
In this work, the lowest spheroidal modes are fitted to a straight line using

the least square technique. In this way, normalized frequencies can be obtained
as a function of Poisson’s ratio (v) through:

(2.2) lξ0 = mlv + bl

values fitted for l = 2, 3 and 4 are summarized in Table 1.

Table 1. Fitting constants for the lowest spheroidal modes of vibration.

l ml bl

2 0.12 2.6

3 0.41 3.8

4 0.71 4.82

From Fig. 1, Eq. (2.2), and Table 1 it is clear that, theoretically, the ra-
tio between two spheroidal frequencies is only a function of Poisson’s ratio for
example, for l = 2 and l = 3, this ratio is given by:

(2.3)
3f0

2f0
=

0.41v + 3.80

0.12v + 2.60

where 3f0 and 2f0 are the experimentally obtained and properly identified sphe-
roidal modes of vibration. Additionally, a normalised frequency can be calculated
using Eq. (2.2) in order to estimate a value for the Young’s modulus (E) of
a spherical sample through [6, 13]:

(2.4) fS =
lξ0

2πa

√

E

ρ

(1 − v)

(1 + v)

where a and ρ are the sphere radius, and density respectively. Assuming that
the material is purely elastic, Shear modulus (G) is calculated using:

(2.5) G =
E

2(1 + v)
.

3. Experimental setup and procedure

3.1. Components

The procedure to test spherical samples begins with the computer that con-
trols a signal generator (TGP3122) to produce a sweep of 5 V sine signals ranging
from 0.1 to 10 kHz, the voltage is then amplified using a conventional 6–250 V
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Fig. 2. Experimental setup for testing soft samples.

transformer and fed to a 11 × 10 × 3 mm Lead Zirconate Titanate based piezo-
electric material (PZT, PZ26, Meggit).The sample is excited by the PZT and
the motion sensed by a vibration sensor formed by a conventional electret mi-
crophone adapted with a latex membrane and a tube forming an air filled closed
cavity. Audio is recorded using a Matlab subroutine and the sound card available
in the laptop (Conexant Smart Audio HD V 8.54.0.53). The membrane-sample
contact was controlled manually with a height calibrator for coarse motion (Mi-
tutoyo 570-312) and digital micrometre head for fine motion (Mitutoyo 164-101).
Measuring of the compression force was accomplished through a load cell (accu-
racy 0.01 mN).

3.2. Testing procedure

At the beginning of each test, the sample is placed on top of the PZT plate,
and the vibration sensor is carefully brought in contact with the upper region of
the sphere up to a force of 5±0.50 mN. Motion from the PZT propagates through
the sample and reaches the vibration sensor, so that, small displacements at the
sphere pole move the membrane generating a sound pressure recorded by the
microphone at a sampling rate of 96 kHz. The signal was converted to amplitude
spectrum using the Fourier transform. Additionally, after testing of each group of
spheres, the sample is substituted for a 4 mm steel sphere in order to determine
the membrane stiffness for displacements ranging from 0.01–0.5 mm.

4. Samples and membranes preparation

4.1. Agarose spheres

Spherical gel samples were prepared by mixing separately 0.2, 0.3, and 0.4 g
of agarose powder (Sigma Aldrich) with 10 ml of hot water (70◦ [14]) to obtain
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2%, 3% and 4% concentrations. The suspensions were stirred for 15 minutes
and placed in an oven at 90◦ for three hours in order to obtain a homogeneous
solution which was poured into a heated glass burette adapted with disposable
pipette tips of different diameter to obtain different sphere sizes. By controlling
the temperature and opening of the burette tap, drops of suspension of approx-
imately 3–6 mm in diameter were gently released on the surface of automotive
oil (SAE 5W30) contained in a cooled glass tube (6◦C) of 80 cm in height. Once
the drop came into contact with the oil, it naturally acquired a spherical shape
which was kept as it was cooling and settling down by gravity towards the base
of the cylinder. The spheres deposited on the bottom were separated and rinsed
using a strainer and soapy water.

4.2. Membrane preparation

Membrane stretching was carried out using the bubble inflation biaxial
test [15] following the procedure described by Drexler [16]. Here, pressure
coming from a water column is used to inflate a circular latex blank (φ 32 mm)
up to a height of 16 mm to form a semi-sphere, then at least four aluminium
nuts (φ 8 mm) were carefully glued to the bubble surface to obtain a membrane-
nut element. Stress level was estimated using the Young-Laplace equation for
inflation of spheres [15, 16]:

(4.1) σ
C2

0 t0
C2

=
Pr

2

where σ is the equibiaxial stress, t0 is the membrane initial thickness (70±20 µm),
C0 is the initial reference length (32 mm) and C is the bubbles arc length, P is
the inflation pressure, and r is the radius of curvature. Experimental data was
then fitted using the strain energy function

(4.2) σ = µ
(

λ2
− λ−4

)

where λ = C
C0

is the biaxial stretch. Fitted variables with this function produce
values for µ = 435± 35 kPa, which are similar to those reported previously [16].

To determine the membrane flexural stiffness, 16 nut-membrane elements
were pressed against a 4 mm rigid sphere, and the force-displacement measure-
ments were fit to a second-order polynomial equation (see Fig. 3). The first
derivative of the fitting function was used to calculate an equivalent stiffness
value for the membrane (km). Using this procedure the stiffness of the mem-
branes used for this work was determined to be km = 83.68 ± 5.30 mN/mm.
This value corresponds to a 10 mN force which causes a deflection (δ) value
of 0.10 mm.
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Fig. 3. Fitted curves (continuous lines) of the experimental force-indentation data
(♦, � and ◦ markers) of 3 representative membranes (a, b, and c).

5. Experimental results

5.1. Vibration test

The recorded spectra for sweep excitation showed at least three clear peaks of
resonance (R1, R2, and R3 in Fig. 4) and in most cases fourth peak (R4 in Fig. 4).
For all agarose concentrations (2%, 3%, and 4%), peak R1 is a sharp peak with
the highest amplitude that consistently remains in the interval ranging from 500
to 1200 Hz, also, peak R2 is higher when compared to R3.

Fig. 4. Typical amplitude spectra of samples of similar size (φ 5 mm) and different agarose
composition.
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5.2. Effect of compression force

It is known that external forces could influence the resonant behaviour of
vibrating systems and for this reason when carrying out Resonant Ultrasound
Spectroscopy experiments on hard samples [17], they are gently pressed against
two flat surfaces so that the force is assumed to be small enough not to modify the
resonant behaviour of the sample under test. However, since samples studied in
this work are soft, even a small force could cause them to behave viscoelastically
and consequently modify their resonance properties. Therefore, to determine the
effect of force on the resonant frequencies, two groups (2% and 4% agarose)
of four samples of approximately 3.9 mm in diameter were tested at different
compression forces. It is clear from Fig. 5 that the R1 and R2 peaks shift towards
higher frequencies as the force increases and the position of peak R3 does not
show a significant dependence at least for forces under 10 mN for both 2% and 4%
agarose. Maximum standard deviations were 3% for R1, 4% for R2 and 8% for R3.

a)

b)

Fig. 5. Shift of resonances as a function of the initial compression force for a set of four
spheres of a) φavg = 3.81 ± 0.07 mm and 2% agarose concentration and b)

φavg = 3.9 ± 0.08 mm and 4% agarose concentration.

5.3. Effect of membrane selection

To prove that the membrane was properly stretched, a group of three nut-
membranes was used to measure the resonant frequencies of four samples (4, 4.73,
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4.87 and 5.52 mm). These nut-membranes were obtained from the same stretched
latex sheet but different blanks. Figure 6 reveals that there is little variation in
the resonant frequencies measured. For all experiments, the standard deviation
remains under 8% of the average frequency.

Fig. 6. Resonant frequencies of 4 samples made of 3% agarose, measurements were made
using three membranes. The compression force was set to 10 mN.

5.4. Effect of sphere size

Sphere diameter is the variable that showed the biggest influence on the
behaviour of the samples. In Fig. 7, it is possible to observe a decreasing value in
resonant frequencies for R1, R2 and R3 as the sample size increases. Although
sometimes smaller samples have lower frequencies compared to samples of similar
size, this downshift is observed in all three frequencies, thus indicating a possible
uncertainty in the size measurement, this phenomenon is signalled using black
arrows in Fig. 7.

Fig. 7. Resonant frequencies for samples made of 2% agarose. Compression force was set
to 10 mN.
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5.5. Numerical model

ANSYS was used to construct a FE model of the vibration test, as Fig. 8
shows, it consists of a sphere connected to a pair of springs at its poles repre-
senting the whole system stiffness. In this model, two surfaces located at 25 µm
above the bottom and below the top of the sphere poles were created in order to
restrict the motion only in the vertical direction (BC1 and BC2) and to connect
the springs. The sample was modelled using a solid sphere made of SOLI186
elements with an average size of 5% of the sphere diameter. The density value
(972 ± 28 kg/m3) was obtained by measuring the samples weight and diameter
using an analytic scale (METTLER PM600) and a micrometre gauge. A general
damping value of 0.1 was set in order to account for the damping of the sample
and medium, this value was estimated using the half-power bandwidth rule and
the amplitude spectra of experimental data.

Fig. 8. Diagram used to construct the FE model of the vibration test.

Two types of analysis were mainly carried out: modal analysis and harmonic
analysis. The first simulation is aimed to determine the effect of spring stiffness
on the position of resonances and the second analysis is aimed to obtain the
amplitude spectra when a vertical excitation is used (F = 5 mN) and in this
way reveal the origin of the resonances. In general simulations are carried out
using a compression force of 5 mN, Young’s modulus in the interval 100 < E <
646 kPa, a sphere diameter 3 < φ < 6 mm, and a springs constant between
0.1 < k < 0.5 N/mm.

Although Hertz theory can be used for the calculation of the spring con-
stants that represent the contact between PZT-sphere and Sphere Membrane,
the mathematical models require variables that are unknown (at the beginning
of the test) like E, and v for the sphere, as well as the force to determine the
slope of the force displacement curve. For this reason, the whole system stiffness
was calculated using the FE results.
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5.6. Ratio between R3 and R2

From Eq. 2.3, it is clear that the ratio between R3 and R2 is only a function of
Poisson’s Ratio (for most materials, 0 < v < 0.5), consequently this ratio should
be in the interval 1.462 < 3f0/2f0 < 1.504. Since experimental data gave smaller
values than 1.46, a FE study was conducted in order to explore the possible
effect of the system stiffness on this ratio. Numerical results suggest that the
ratio decreases as the spring constant increases, following an exponential rule
given by:

(5.1)
3f0

2f0
= 0.1222e−4.71k + 1.374.

This equation describes well both experimental and numerical results as Fig. 9
shows.

Fig. 9. Ratio 3f0/2f0 obtained numerically, theoretically, and experimentally.

5.7. Determination of Young’s modulus

Experimental resonant frequencies obtained for samples made of the same
agarose composition depend on both the size and the compression force. Among
the resonances, the less immune to compression is R3, since the samples are
made of gel (v ≈ 0.5).

In the literature, the first peak is not normally taken into account when
carrying out the mechanical characterization of hard samples (see for exam-
ple [17]) and its origin has not been conclusively determined. It is also known
that the spheroidal mode with the lowest frequency is the Quadrupole (iden-
tified as 2ξ0) and right after is the Octupole (identified as 3ξ0). Hence, a first
identification for the modes of vibration is that R2 belongs to the Quadrupole
and R3 belongs to the Octupole. Therefore, using the information from Table 1
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(m3 = 0.41, b3 = 3.8) and Eq. (2.4), the normalized frequency is 3ξ0 = 4, in this
way, a Young’s modulus value based on the information from the Octupole is
given by:

(5.2) EOP = 1.5ρ(fsπd)2.

Using Eq. (5.2) Young’s modulus for agarose gels of different concentration
is estimated as Table 2 summarizes.

Table 2. Young’s modulus for 2%, 3% and 4% agarose spheres.

Agarose 2% 3% 4%

EOP (kPa) 209 ± 19.8 338 ± 35.3 646 ± 109

A modal analysis was carried out for samples of 4 mm using Young’s modulus
values shown in Table 2. The deformation and resonances obtained in three ways
experimental, numerical and theoretical agree well as Table 3 shows. Notice that
the numerical calculation agrees well with the theoretical prediction when there
is no spring.

Table 3. First vertical modes of vibration obtained from a modal analysis
simulation. The sample is a 4 mm, 2% agarose sphere, for this simulation

E = 232 kPa ( ∗ when the stiffness of spring is zero the value of the QP obtained
numerically is 1.88).

Mode shape

Experimental 0.9 2.05 2.85

Numerical 0.87 2.1∗ 2.84

Theoretical – 1.88 2.84

5.8. Origin of R1, R2 and R3

After matching peaks with the deformations shapes in the FEM, it was pos-
sible to determine that R1 corresponds to the rigid body motion caused by
the mass of the sphere and springs representing contacts (see Table 3a) and
the whole system stiffness; R2 corresponds to the Quadrupole deformation (see



Mechanical characterization of millimetric agarose spheres. . . 229

Table 3b) and R3 correspond to the Octupole deformation (see Table 3c). Addi-
tionally, R1 can be calculated using a lumped model and the stiffness values of
the springs as follows:

(5.3) R1 =
1

2π

√

ksystem

msample

.

6. Discussion

The experimental setup presented in this paper proved to be useful to detect
at least three peaks of resonance. FEM model suggests that peaks R2 and R3
are spheroidal and belong to the well-known Quadrupole and Octupole modes
of vibration. Previous experimental research also supports the idea that our
experimental setup preferentially excites spheroidal modes, just like Fraiser [18]
preferentially excited torsional modes using a shear actuator.

As stated in the introduction, a mechanical characterization of the sam-
ples (i.e. determination of Young’s modulus and Poisson’s ratio) is possible
through vibrations theory, as long as we know the mass and geometric proper-
ties. Experimental work showed that agarose spheres have similar density values
(972±28 kg/cm3) because their main component is water, also, geometric prop-
erties for the samples are fully determined through the diameter, which can be
measured with a 10 µm accuracy. By assuming that the gels are incompressible
(v = 0.5), the only remaining variable to represent the elastic properties would
be Young’s modulus. For this reason, experimental and numerical data were fo-
cused on finding how this modulus was related to the resonances and to what
extent the theory for free vibrations of elastic spheres could be used.

Although experimental and numerical results confirmed that resonances have
a marked dependence on the sphere size (see Fig. 7), theoretical predictions for
resonances did not seem to represent the experimental setup since the ratio be-
tween the Octupole and Quadrupole frequencies gave values outside the interval
predicted theoretically (1.462 < 3f0/2f0< 1.504) for the whole range of Pois-
son’s ratio (0 < v < 0.5). For this reason, it was concluded that the measuring
system was affecting the vibrating behaviour of the samples. Numerical and ex-
perimental data suggest that compression force and system stiffness are the two
variables that mainly affect the R3/R2 ratio (see Figs. 5 and 9). These variables
are related, because, compression force determines the partial stiffness at the
bottom (k in Fig. 8) of the sphere as the Hertz contact theory states, and also
determines the stiffness at the top because it includes the membrane stiffness
(km, see Fig.3). By setting the compression to 5 mN, we were able to conduct
a parametric numerical study that evidences an exponential dependence between

3f0/2f0 and k whose behaviour highly resembles the equation that models the
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stress strain relationship in the bubble inflation test (see Fig. 9), thus suggest-
ing that membrane stiffness plays a key role in determining the position of R1
and R2.

Numerical results show that the position of peak R3 has less dependence
on the system stiffness, for this reason, the authors propose this frequency to
calculate an initial value for Young’s modulus of the samples (EOP ). The EOP

values obtained in this way remained in the interval ranging from 100–650 kPa
as observed for 2%, 3%, and 4% agarose spherical samples. These values are in
good agreement with previous studies using tests based on contact mechanics
principles and rheological techniques [19–23], which situate Young’s modulus in
the interval ranging from 1 kPa to 1 MPa for an agarose concentration between
1 and 10%. Using an EOP value in this interval allowed to carry out a parametric
study to determine the relationship between the ratio R3/R2 and the system
stiffness k. The results show that there is an exponential dependence between
these two variables, and, the mathematical model obtained (see Eq. (5.1) and
Fig. 9) accurately describes experimental data.

Elastic properties of millimetric spherical bodies were calculated with the
procedure proposed in this paper. It is clear that these properties of agarose can
be easily tuned, contrary to rigid bodies where Young’s modulus remains within
a narrow magnitude for similar alloys, for example, ferrous alloys have almost
the same 200 GPa Young’s modulus, while a change in one percent of agarose
composition could lead to a two-fold difference in the same variable. This is im-
portant in tissue engineering for successful 3D cell growing, especially if multiple
stiffnesses are to be used [24–26]. These scaffolds could help to construct more
complex structures that better mimic real organs like tendons-bone interface
tissue [27].

At the moment, the technique used to manufacture the samples only allowed
us to obtain agarose spheres closely distributed in size (3–5 mm) whose peaks
of resonance are expected to reach 7 kHz for agarose concentration greater than
4%. For this reason, the experimental study presented in this paper was only
conducted on samples made of low agarose concentration in order to avoid the
overlapping of the resonances of the samples with those of the experimental setup
appearing from 7 kHz onwards.

Although there is plenty of information related to the characterization of the
stiffness properties of soft materials used for cell culture purposes [28], these tech-
niques are mainly dedicated to carry out the characterization at the beginning
and after the culture. To date, very little work has been proposed to estimate
the stiffness of the scaffold whilst tissue is being grown [22, 23, 28] and it is only
when engineered tissues have already been implanted that monitoring of their
stiffness has been carried out using techniques like Magnetic Resonance Imag-
ing [29, 30]. Monitoring of the scaffold stiffness is important because the scaffold
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materials are expected to degrade along with time, and significant changes in the
stiffness of the engineered tissue might result in insufficient cell proliferation in
the engineered part, or in the worst scenario, rejection from the implantation site
due to stiffness mismatch between the engineered tissue and the host body [31].

7. Conclusion

The experimental setup and methodology proposed in this paper to estimate
the stiffness properties of soft materials were proved on millimetric spheres made
of agarose. This setup proved to be useful for the obtaining of an amplitude spec-
tra of the sample in which, two widely known peaks of resonance Quadrupole
and Octupole modes of vibration were identified and corroborated through a nu-
merical simulation. Since the ratio between R3 and R2 could not be described
in terms of the equation of motion for a free sphere, a mathematical model to
determine the whole system stiffness was proposed. By using the frequency of
the Octupole mode of vibration, equivalent Young’s moduli of 209 ± 19.80 kPa,
338± 35.30 kPa, and 646± 109 kPa were calculated for 2%, 3% and 4% agarose
gels. This study could contribute to the finding of resonances of micrometric
spheres such as suspended biological cells whose existence remains as an open
question, and that can be investigated using techniques such as AFM that highly
resemble the experimental setup presented in this paper.
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