PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eco-friendly high-rate formation of silver nanoparticles in agave inulin and its bactericidal effect against Escherichia coli

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high rate of silver nanoparticle formation, effective against the Escherichia coli (E. coli) bacterium, was obtained for the first time by means of a simple, eco-friendly, and low-cost green method in a solution of agave inulin. The study was carried out using the traditional method, in which the effects of the concentration of agave inulin, AgNO3, temperature, and pH on the synthesis were analyzed by UV-Vis spectroscopy and transmission electron microscopy (TEM). Most of the nanoparticles produced were spherical with a size less than 10 nm. In a sample with 20 mg/mL of agave inulin, 1 mM of AgNO3, T = 23°C, and pH = 12, the highest percentage of Ag+ ions available in the solution were reduced for the formation of nanoparticles in less than 40 min, whereas a sample prepared with 60 mg/mL of agave inulin, 10 mM of AgNO3, T = 23°C, pH = 12, and a storage time of 40 min showed a significant bactericidal effect on the E. coli strain. Agave inulin is a good biological compound for the formation of small, spherical silver nanoparticles. A pH of 12 favors a higher production speed of the silver nanoparticles and better use of the available Ag+ ions. In addition to this, the concentration of AgNO3 is a determining factor for increased formation of the nanoparticles necessary to bactericidal effect.
Wydawca
Rocznik
Strony
62--73
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Naturales y Exactas, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Naturales y Exactas, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Salud, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Salud, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Salud, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
  • Universidad de Guadalajara, Centro Universitario de los Lagos, Laboratorio de Biofísica y Ciencias Biomédicas, Enrique Díaz de León, Paseo de la Montaña, Lagos de Moreno, Jalisco, México, 47460
  • Universidad de Guadalajara, Centro Universitario de los Lagos, Laboratorio de Biofísica y Ciencias Biomédicas, Enrique Díaz de León, Paseo de la Montaña, Lagos de Moreno, Jalisco, México, 47460
  • Universidad de Guadalajara, Centro Universitario de los Valles, Dpto. Cs. Naturales y Exactas, Carretera Guadalajara-Ameca Km 45.5, Ameca, Jalisco, México, 46600
Bibliografia
  • [1] Mishra S, Singh HB. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol. 2015;99(3):1097–107. doi: 10.1007/s00253-014-6296-0
  • [2] Sánchez-Rojo SA, Martínez-Zerega BE, Velázquez-Pedroza EF, Martínez-Espinosa J. C, Torres-González L. A, Aguilar-Lemarroy A, et al. Cervical cancer detection based on serum sample surface enhanced Raman spectroscopy. Rev Mex Fis. 2016;62(3):213–8.
  • [3] Téllez GL, Luckie RAM, Mejía OFO, Mendieta VS, Reyes JT, Guerrero VV, et al. Nanoestructuras metálicas. 1st ed. México: Reverté; 2013.
  • [4] Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. 2015;2015: 1–18. doi: 10.1155/2015/829526
  • [5] Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi: 10.1016/j.jare.2015.02.007
  • [6] Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357–61. doi: 10.1021/la020835i
  • [7] Poulose S, Panda T, Nair PP, Theodore T. Biosynthesis of silver nanoparticles. J Nanosci Nanotechnol. 2014;14(2):2038–49. doi: 10.1166/jnn.2014.9019
  • [8] Bordoloi M, Sahoo RK, Tamuli KJ, Saikia S, Dutta PP. Plant extracts promoted preparation of silver and gold nanoparticles: a systematic review. Nano. 2020;15(02):1–24. doi: 10.1142/S1793292020300017
  • [9] Oseguera-Galindo DO, Oceguera-Contreras E, Pozas-Zepeda D. Silver nanoparticles synthesis using biomolecules of habanero pepper (Capsicum chinense Jacq.) as a reducing agent. J Nat Prod. 2020;14(3): 036012–036012. doi: 10.1117/1.JNP.14.036012
  • [10] Justo MB, Oropeza LG, Hernández RS, Negrete LP. Azúcares en agaves (Agave tequilana Weber) cultivados en el estado de Guanajuato. Acta Univ. 2001;11(1):33–8. doi: http://www.redalyc.org/articulo.oa?id=41611105
  • [11] Handa C, Goomer S, Siddhu A. Physicochemical properties and sensory evaluation of fructoligosaccharide enriched cookies. J Food Sci. 2012;49(2):192–9. doi: 10.1007/s13197-011-0277-4
  • [12] Sánchez-Vieyra MT. Estudio de condiciones físicas y químicas en la biosíntesis de nanopartículas de plata usando infusión de chía (Salvia hispánica) e inulina de agave. Master’s Degree Thesis. Guadalajara, México: University of Guadalajara; 2020.
  • [13] Hughes SR, Qureshi N, López-Núñez JC, Jones MA, Jarodsky JM, Galindo-Leva LA, et al. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J Microbiol Biotechnol. 2017;33(78):1–15. doi: 10.1007/s11274-017-2241-6
  • [14] Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N. Inulin-a versatile polysaccharide: use as food chemical and pharmaceutical agent. J Excip Food Chem. 2010;1(3):27–50.
  • [15] Montañez-Soto J, Venegas-González J, Vivar-Vera M, Ramos-Ramírez E. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber azul. Bioagro. 2011;23(3):199–206.
  • [16] Lara-Fiallos M, Lara-Gordillo P, Julián-Ricardo MC, Pérez-Martínez A, Benítes-Cortés I. Avances en la producción de inulina. Tecnología Química. 2017;37(2): 352–66.
  • [17] Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020;7(1):105–9. doi: 10.1080/26415275.2020.1796674
  • [18] Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv. 2014;4(8):3974–83. doi: 10.1039/c3ra44507k
  • [19] Oseguera-Galindo DO, Ceja-Andrade I, Martínez-Benítez A, Gómez Rosas G, Chávez-Chávez A, Pérez-Centeno A, Santa-Aranda MA. Overlapping of laser pulses and its effect on the yield of silver nanoparticles in water. J Mater Sci Eng B. 2014;4(10):279–83. doi: 10.17265/2161-6221/2014.10.002
  • [20] Haiss W, Thanh NT, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem. 2007;79(11):4215–21. doi: 10.1021/ac0702084
  • [21] Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol Biomol. 2012;93:95–9. doi: 10.1016/j.saa.2012.03.002
  • [22] Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, et al. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. J Mol Liq. 2015;207:159-63. doi: 10.1016/j.molliq.2015.03.029
  • [23] Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci. 2016;9(1):109–15. doi: 10.1016/j.jrras.2015.11.001
  • [24] Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7(1):1–13. doi: 10.1038/s41598-017-15724-8
  • [25] Findley ME. Modified one-at-a-time optimization. AIChE J. 1974;20(6):1154–60. doi: 10.1002/aic.690200614
  • [26] Bhowmik S, Das T, Ghosh S, Sharma BK, Majumdar S, De UC. Synthesis of some new chrysin derivatives and their biological assessment as antibacterial, antibiofilm and antifungal agents. Asian J. Chem. 2018;30(3):693–702. doi: 10.14233/ajchem.2018.21167
  • [27] Oseguera-Galindo DO, Martinez-Benitez A, Chavez-Chavez A, Gomez-Rosas G, Perez-Centeno A, Santana-Aranda MA. Effects of the confining solvent on the size distribution of silver NPs by laser ablation. J Nanopart Res. 2012;14(9):1–6. doi: 10.1007/s11051-012-1133-9
  • [28] Autino JC, Romanelli GP, Ruiz DM. Introducción a la química orgánica. 1st ed. La Plata: Editorial de la Universidad Nacional de La Plata (EDULP); 2013.
  • [29] Zhang W, Xu W, Li J, Liu H, Li Y, Lou Y, et al. Comparative catalytic and bacteriostatic properties of silver nanoparticles biosynthesized using three kinds of polysaccharide. AIP Adv. 2018;8(6):1–8. doi: 10.1063/1.5034479
  • [30] Marciniak L, Nowak M, Trojanowska A, Tylkowski B, Jastrzab R. The effect of pH on the size of silver nanoparticles obtained in the reduction reaction with citric and malic acids. Materials. 2020;13(23):1–12. doi: 10.3390/ma13235444
  • [31] Herrera E, Álvarez MDPR, Salom PR, Arribas MV. Bioquímica básica. 1st ed. España SL: Elsevier; 2014.
  • [32] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–53. doi: 10.1088/0957-4484/16/10/059
  • [33] Ma L, Su W, Liu J-X, Zeng X-X, Huang Z, Li W, et al. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng. 2017;77:963–71. doi: 10.1016/j.msec.2017.03.294
  • [34] Maldonado-Vega M, Guzmán D, Camarena-Pozos DA, Castellanos-Arévalo AP, Salinas Ramírez A, Garibo D, Bogdanchikova N. Application of silver nanoparticles to reduce bacterial growth on leather for footwear manufacturing. J Appl Res. Technol. 2021;19(1):41–8.
  • [35] Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3(1):95–101. doi: 10.1016/j.nano.2006.12.001
  • [36] Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicro. Agents Chemother. 2002;46 (8):2668–70. doi: 10.1128/AAC.46.8.2668-2670.2002
  • [37] Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res. 2001;156(1):1–7. doi: 10.1078/0944-5013-00069
  • [38] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82. doi: 10.1016/j.jcis.2004.02.012
  • [39] Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu GY. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16(6):2789–96. doi: 10.1021/la991013x
  • [40] Gupta P, Bajpai M, Bajpai SK. Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton Sci. 2008;12(3):280–6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fd2e15f-a3df-4924-9b54-29b2134f56f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.