PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigations on the dynamic behaviour of a 2-DOF airfoil with application in energy harvesting system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the basic airfoil model with two degrees of freedom - the semi-rigid model, where its forced vibrations were considered, and the exciting force is the aerodynamic force, including its periodic changes, that is, gusts. Since the phenomenological model under study has a coupled form, its versions after decoupling are presented, which has an impact on the results of the final research. The airfoil model presented in this way was shown from the application side in the system of a simple energy harvester based on a deformable beam with piezoelectric elements. The result of the simulation tests is a preliminary analysis of the possibility of using the airfoil as a vibration generator for the energy harvesting system. Along with the application of the mechanical part, a numerical simulation of the electrical part was also implemented, related to the transformation of the voltage generated by piezoelectric elements into a constant voltage signal with a connected receiver with power consumption similar to the Atmega microcontroller with battery charging.
Rocznik
Tom
Strony
77--91
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
Bibliografia
  • 1. Litak Grzegorz, Jerzy Margielewicz, Damian Gąska, Piotr Wolszczak, Shengxi Zhou. 2021. “Multiple Solutions of the Tristable Energy Harvester.” Energies 14(5): 1284. ISSN: 1996-1073. doi:10.3390/EN14051284.
  • 2. Lan Chunbo, Weiyang Qin. 2017. “Enhancing Ability of Harvesting Energy from Random Vibration by Decreasing the Potential Barrier of Bistable Harvester.” Mechanical Systems and Signal Processing 85: 71-81. ISSN: 0888-3270. DOI: 10.1016/j.ymssp.2016.07.047.
  • 3. Madruga Santiago. 2021. “Modeling of Enhanced Micro-Energy Harvesting of Thermal Ambient Fluctuations with Metallic Foams Embedded in Phase Change Materials.” Renewable Energy 168: 424-437. ISSN: 0960-1481. DOI: 10.1016/J.RENENE.2020.12.041.
  • 4. Abdelkefi Abdessattar. 2016. “Aeroelastic Energy Harvesting: A Review.” International Journal of Engineering Science 100: 112-135. ISSN: 0020-7225. DOI: 10.3390/EN14051284.
  • 5. Wang Junlei, Linfeng Geng, Lin Ding, Hongjun Zhu, Daniil Yurchenko. 2020. “The State-of-the-Art Review on Energy Harvesting from Flow-Induced Vibrations.” Applied Energy 267: 114902. ISSN: 0306-2619. DOI: 10.1016/J.APENERGY.2020.114902.
  • 6. Lee Yin Jen, Yi Qi, Guangya Zhou, Kim Boon Lua. 2019. “Vortex-Induced Vibration Wind Energy Harvesting by Piezoelectric MEMS Device in Formation.” Scientific Reports 9(1): 1-11. ISSN: 2045-2322. DOI: 10.1038/s41598-019-56786-0.
  • 7. Zhao Liya, Yaowen Yang. 2018. “An Impact-Based Broadband Aeroelastic Energy Harvester for Concurrent Wind and Base Vibration Energy Harvesting.” Applied Energy 212: 233-243. ISSN: 0306-2619. DOI: 10.1016/J.APENERGY.2017.12.042.
  • 8. Tan Ting, Lei Zuo, Zhimiao Yan. 2021. “Environment Coupled Piezoelectric Galloping Wind Energy Harvesting.” Sensors and Actuators A: Physical 323: 112641. ISSN: 0924-4247. DOI: 10.1016/J.SNA.2021.112641.
  • 9. Toroń Bartłomiej, Krystian Mistewicz, Marcin Jesionek, Mateusz Kozioł, Maciej Zubko, Danuta Stróż. 2022. “A New Hybrid Piezo/Triboelectric SbSeI Nanogenerator.” Energy 238: 122048. ISSN: 0360-5442. DOI: 10.1016/J.ENERGY.2021.122048.
  • 10. Litak Grzegorz, Bartłomiej Ambrozkiewicz, Piotr Wolszczak. 2021. “Dynamics of a Nonlinear Energy Harvester with Subharmonic Responses.” Journal of Physics: Conference Series 1736(1). ISSN: 1742-6596. DOI: 10.1088/1742-6596/1736/1/012032.
  • 11. Margielewicz Jerzy, Damian Gąska, Grzegorz Litak, Piotr Wolszczak, Daniil Yurchenko. 2022. “Nonlinear Dynamics of a New Energy Harvesting System with Quasi-Zero Stiffness.” Applied Energy 307: 118159. ISSN: 0306-2619. DOI: 10.1016/J.APENERGY.2021.118159.
  • 12. Lin R. M., T.Y. Ng. 2018. “Identification of Volterra Kernels for Improved Predictions of Nonlinear Aeroelastic Vibration Responses and Flutter.” Engineering Structures 171: 15-28. ISSN: 0141-0296. DOI: 10.1016/J.ENGSTRUCT.2018.05.073.
  • 13. Mehdipour Iman, Francesco Madaro, Francesco Rizzi, Massimo De Vittorio. 2022. “Comprehensive Experimental Study on Bluff Body Shapes for Vortex-Induced Vibration Piezoelectric Energy Harvesting Mechanisms.” Energy Conversion and Management: X 13: 100174. ISSN: 0196-8904. DOI: 10.1016/J.ECMX.2021.100174.
  • 14. Zhou Zhiyong, Weiyang Qin, Pei Zhu, Wenfeng Du. 2021. “Harvesting More Energy from Variable-Speed Wind by a Multi-Stable Configuration with Vortex-Induced Vibration and Galloping.” Energy 237: 121551. ISSN: 0360-5442. DOI: 10.1016/J.ENERGY.2021.121551.
  • 15. Elahi Hassan, Marco Eugeni, Paolo Gaudenzi. 2022. Galloping-Based Aeroelastic Energy Harvesting. Elsevier. ISBN: 978-0-12-823968-1.
  • 16. Xu Ming, Bin Wang, Xiaoya Li, Shengxi Zhou, Daniil Yurchenko. 2022. “Dynamic Response Mechanism of the Galloping Energy Harvester under Fluctuating Wind Conditions.” Mechanical Systems and Signal Processing 166: 108410. ISSN: 0888-3270. DOI: 10.1016/J.YMSSP.2021.108410.
  • 17. Usman Muhammad, Asad Hanif, In Ho Kim, Hyung Jo Jung. 2018. “Experimental Validation of a Novel Piezoelectric Energy Harvesting System Employing Wake Galloping Phenomenon for a Broad Wind Spectrum.” Energy 153: 882-889. ISSN: 0360-5442. DOI: 10.1016/J.ENERGY.2018.04.109.
  • 18. Jung Hyung Jo, Seung Woo Lee. 2011. “The Experimental Validation of a New Energy Harvesting System Based on the Wake Phenomenon.” Smart Materials and Structures 20(5): 055022. ISSN: 0964-1726. DOI: 10.1088/0964-1726/20/5/055022.
  • 19. Dos Santos Carlos R., Flávio D. Marques, Muhammad R. Hajj. 2019. “The Effects of Structural and Aerodynamic Nonlinearities on the Energy Harvesting from Airfoil Stall-Induced Oscillations”. Journal of Vibration and Control 25(14): 1991-2007. ISSN: 1077-5463. DOI: 10.1177/1077546319844383.
  • 20. Bibo Amin, Mohammed F. Daqaq. 2013. “Energy Harvesting under Combined Aerodynamic and Base Excitations.” Journal of Sound and Vibration 332(20): 5086-5102. ISSN: 0022-460X. DOI: 10.1016/J.JSV.2013.04.009.
  • 21. Liu Haojie, Xiumin Gao. 2019. “Vibration Energy Harvesting under Concurrent Base and Flow Excitations with Internal Resonance.” Nonlinear Dynamics 96(2): 1067-1081. ISSN: 0924-090X. DOI: 10.1007/S11071-019-04839-4/FIGURES/15.
  • 22. Wu Yining, Daochun Li, Jinwu Xiang, Andrea Da Ronch. 2016. “A Modified Airfoil-Based Piezoaeroelastic Energy Harvester with Double Plunge Degrees of Freedom.” Theoretical and Applied Mechanics Letters 6(5): 244-247. ISSN: 2095-0349. DOI: 10.1016/J.TAML.2016.08.009.
  • 23. Rajagopal Karthikeyan, Yesgat Admassu, Riessom Weldegiorgis, Prakash Duraisamy, Anitha Karthikeyan. 2019. “Chaotic Dynamics of an Airfoil with Higher-Order Plunge and Pitch Stiffnesses in Incompressible Flow.” Complexity. Article ID 5234382. ISSN: 1076-2787. DOI: 10.1155/2019/5234382.
  • 24. De Sousa Vagner Candido, Carlos De Marqui Junior. 2015. “Airfoil-Based Piezoelectric Energy Harvesting by Exploiting the Pseudoelastic Hysteresis of Shape Memory Alloy Springs.” Smart Materials and Structures 24(12): 125014. ISSN: 0964-1726. DOI: 10.1088/0964-1726/24/12/125014.
  • 25. Wei Z. A., Z.C. Zheng. 2017. “Energy-Harvesting Mechanism of a Heaving Airfoil in a Vortical Wake.” AIAA Journal 55(12): 4061-4073. ISSN: 1533-385X. DOI: 10.2514/1.J055628.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fd2d6fb-7b0e-432b-9ada-7199f03f5f4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.