PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magazynowanie energii za pośrednictwem sprężonego powietrza

Identyfikatory
Warianty tytułu
EN
Cooperation of sources in distributed generation
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono obecny stan technologii magazynowania energii w postaci sprężonego powietrza. W oparciu o odpowiednie modele dynamiczne takich instalacji i symulacje procesów ładowania i rozładowania, przedstawiono możliwe do osiągnięcia efektywności magazynowania energii oraz towarzyszące im różnorakie definicje. Pokazano możliwości współpracy magazynów CAES ze źródłami odnawialnymi takimi jak turbiny wiatrowe czy ogniwa słoneczne, tworzące w ten sposób układy hybrydowe. Na podstawie dostępności kawern, zaproponowano szereg lokalizacji takich magazynów na terenie Polski.
EN
The article presents a current state of development of compressed air energy storage technology (CAES). Based on the appropriate dynamic models of such installations and simulations of the loading and unloading processes, the achievable energy storage efficiency and the various definitions accompanying them were shown. Opportunities for CAES to cooperate with renewable sources such as wind turbines and solar cells, thus creating hybrid systems were also pointed out. Based on the availability of caverns, a number of locations of such a storage were proposed in Poland.
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--59
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
Bibliografia
  • [1] J. Stempien, Q. Liu, M. Ni, Q. Sun, S. Chan: Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a solid oxide electrolyzer cell (SOEC), Electrochimica Acta 147, pp. 490-497, 2014.
  • [2] D. Bakalis, A. Stamatis: Improving hybrid SOFC-GT systems performance through turbomachinery design, International Journal of Energy Research 38(15), pp. 1975-1986, 2014.
  • [3] G. De Lorenzo, P. Fragiacomo: Energy analysis of an SOFC system fed by syngas, Energy Conversion and Management 93, pp. 175-186, 2015.
  • [4] J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, X. Xu: New sensor for gases dissolved in transformer oil based on solid oxide fuel cell, Sensors and Actuators, B: Chemical 202, pp. 232-239, 2014.
  • [5] M. Ferrari: Advanced control approach for hybrid systems based on solid oxide fuel cells, Applied Energy 145, pp. 364-373, 2015.
  • [6] E. Hosseinzadeh, M. Rokni, M. Jabbari, H. Mortensen: Numerical analysis of transport phenomena for designing of ejector in PEM forklift system, International Journal of Hydrogen Energy 39 (12), pp. 6664-6674, 2014.
  • [7] J. Kupecki, J. Jewulski, K Motylinski: Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes, International Journal of Hydrogen Energy 40(35), pp. 11633-11640, 2015.
  • [8] M. Law, V.-C. Lee, C. Tay: Dynamic behaviors of a molten carbonate fuel cell under a sudden shut-down scenario: The effects on temperature gradients, Applied Thermal Engineering 82, pp. 98-109, 2015.
  • [9] A.-G. Liu, Y.-W. Weng, L. Chen, H.-A. Ma: Performance analysis of fuel cell for pressured MCFC/MGT hybrid system, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University 48(9), pp. 1239-1245, 2014.
  • [10] P. Pianko-Oprych, E. Kasilova, Z. Jaworski: Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling, Polish Journal of Chemical Technology 16(2), pp. 51-55, 2014.
  • [11] J. Qian, J. Hou, Z. Tao, W. Liu: Fabrication of (Sm, Ce)O2-σ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells, Journal of Alloys and Compounds 631, pp. 255-260, 2015.
  • [12] P. Polverino, C. Pianese, M. Sorrentino, D. Marra: Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis, Journal of Power Sources 280, pp. 320-338, 2015.
  • [13] K. Raj, S. Chan: Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in HT-PEMFC during dynamic current extraction, Electrochimica Acta 165, pp. 288-300, 2015.
  • [14] M. Ramandi, I. Dincer, P. Berg: A transient analysis of three-dimensional heat and mass transfer in a molten carbonate fuel cell at start-up, International Journal of Hydrogen Energy 39(15), pp. 8034-8047, 2014.
  • [15] I. Rexed, M. della Pietra, S. McPhail, G. Lindbergh, C. Lagergren: Molten carbonate fuel cells for CO2 separation and segregation by retrofitting existing plants – an analysis of feasible operating windows and first experimental findings, International Journal of Greenhouse Gas Control 35, pp. 120-130, 2015.
  • [16] R. Roshandel, M. Astaneh, F. Golzar: Multi-objective optimization of molten carbonate fuel cell system for reducing CO2 emission from exhaust gases, Frontiers in Energy 9(1), pp. 106-114, 2015.
  • [17] J.-H. Wee: Carbon dioxide emission reduction using molten carbonate fuel cell systems, Renewable and Sustainable Energy Reviews 32, pp. 178-191, 2014.
  • [18] H. Xu, Z. Dang, B.-F. Bai: Electrochemical performance study of solid oxide fuel cell using lattice boltzmann method, Energy 67, pp. 575-583, 2014.
  • [19] X. Zhang, H. Liu, M. Ni, J. Chen: Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system, Renewable Energy 80, pp. 407-414, 2015.
  • [20] S. K. Khaitan, M. Raju: Dynamics of hydrogen powered CAES based gas turbine plant using sodium alanate storage system, International Journal of Hydrogen Energy 37(24), pp. 18904-18914, 2012.
  • [21] A. Cavallo: Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES), Energy 32(2), pp. 120-127, 2007.
  • [22] Y. S. Najjar, M. S. Zaamout: Performance analysis of compressed air energy storage (CAES) plant for dry regions, Energy conversion and management 39(15), pp. 1503-1511, 1998.
  • [23] G. Grazzini, A. Milazzo: Thermodynamic analysis of CAES/TES systems for renewable energy plants, Renewable Energy 33(9), pp. 1998-2006, 2008.
  • [24] G. Salgi, H. Lund: System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources, Applied Energy 85(4), pp. 182-189, 2008.
  • [25] P. Denholm, R. Sioshansi: The value of compressed air energy storage with wind in transmission-constrained electric power systems, Energy Policy 37(8), pp. 3149-3158, 2009.
  • [26] H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron: Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas, Applied Energy 87(5), pp. 1749-1762, 2010.
  • [27] Y. Kim, D. Favrat: Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system, Energy 35(1), pp. 213-220, 2010.
  • [28] N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop: Simulation and analysis of different adiabatic compressed air energy storage plant configurations, Applied Energy 93, pp. 541-548, 2012.
  • [29] N. M. Jubeh, Y. S. Najjar: Power augmentation with CAES (compressed air energy storage) by air injection or supercharging makes environment greener, Energy 38(1), pp. 228-235, 2012.
  • [30] Y. Li, X. Wang, D. Li, Y. Ding: A trigeneration system based on compressed air and thermal energy storage, Applied Energy 99, pp. 316-323, 2012.
  • [31] V. Kokaew, M. Moshrefi-Torbati, S. M. Sharkh: Maximum efficiency or power tracking of stand-alone small scale compressed air energy storage system, Energy Procedia 42, pp. 387-396, 2013.
  • [32] T. Brown, V. Atluri, J. Schmiedeler: A low-cost hybrid drivetrain concept based on compressed air energy storage, Applied Energy 134, pp. 477-489, 2014.
  • [33] E. Jannelli, M. Minutillo, A. L. Lavadera, G. Falcucci: A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology, Energy 78, pp. 313-322, 2014.
  • [34] T. Basbous, R. Younes, A. Ilinca, J. Perron: Optimal management of compressed air energy storage in a hybrid wind-pneumatic-diesel system for remote area's power generation, Energy 84, pp. 267-278, 2015.
  • [35] B. C. Cheung: Design of system architecture and thermal management components for an underwater energy storage facility, Master's thesis, University of Windsor, 2014.
  • [36] B. C. Cheung, R. Carriveau, D. S. Ting: Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm, Energy 74, pp. 396-404, 2014.
  • [37] B. C. Cheung, R. Carriveau, D. S.-K. Ting: Parameters affecting scalable underwater compressed air energy storage, Applied Energy 134, pp. 239-247, 2014.
  • [38] A. J. Pimm, S. D. Garvey, M. de Jong: Design and testing of energy bags for underwater compressed air energy storage, Energy 66, pp. 496-508, 2014.
  • [39] A. Vasel-Be-Hagh, R. Carriveau, D. S.-K. Ting: Underwater compressed air energy storage improved through vortex hydro energy, Sustainable Energy Technologies and Assessments 7, pp. 1-5, 2014.
  • [40] B. Kantharaj, S. Garvey, A. Pimm: Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air, Sustainable Energy Technologies and Assessments 11, pp. 159-164, 2015.
  • [41] K. Badyda, J. Milewski: Magazynowanie energii z wykorzystaniem układów CAES, w Monografii "Współczesne problemy energetyki gazowej i gazownictwa" wydanej z okazji IV Konferencji Energetyka Gazowa, Wydawnictwo Instytutu Techniki Cieplnej Politechniki Śląskiej, pp. 371-388, Gliwice, 2009.
  • [42] F. Crotogino, K.-U. Mohmeyer, R. Scharf: Huntorf CAES: More than 20 years of successful operation, Orlando, Florida, USA, 2001.
  • [43] H.-M. Kim, J. Rutqvist, D.-W. Ryu, B.-H. Choi, C. Sunwoo, W.-K. Song: Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance, Applied Energy 92, pp. 653-667, 2012.
  • [44] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz: Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation, Energy 64, pp. 513-523, 2014.
  • [45] Y. Zhang, K. Yang, X. Li, J. Xu: The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system, Renewable Energy 57, pp. 469-478, 2013.
  • [46] N. M. Jubeh, Y. S. Najjar: Green solution for power generation by adoption of adiabatic CAES system, Applied Thermal Engineering 44, pp. 85-89, 2012.
  • [47] A. Bagdanavicius, N. Jenkins: Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system, Energy Conversion and Management 77, pp. 432-440, 2014.
  • [48] A. Kere, N. Sadiki, X. Py, V. Goetz: Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions, Energy Conversion and Management 88, pp. 113-119, 2014.
  • [49] H. Safaei, D. W. Keith, R. J. Hugo: Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization, Applied Energy 103, pp. 165-179, 2013.
  • [50] B. Haug: The Iowa Stored Energy Plant, DOE Energy Storage Systems Program Annular Peer Reviev, 10-11, 2004.
  • [51] F. Crotogino: Druckluftspeicher-gasturbinen-kraftwerke/geplanter einsatz beim ausgleich fluktuierender windenergie-produktion und aktuellem strombedarf, in: Kasseler Symposium Energie-Systemtechnik, pp. 26-38, 2002.
  • [52] V. Marano, G. Rizzo, F. A. Tiano: Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage, Applied Energy 97, pp. 849-859, 2012.
  • [53] “Polish electric power statistics 2012, 2013”, 2013, 2014.
  • [54] J. Cywiński: Study on the impact of wind generation on the KSE, Master's thesis, Warsaw University of Technology, 2014.
  • [55] R. Wiser, M. Bolinger: 2010 wind technologies market report, US department of energy, Energy efficiency and renewable energy, 2011.
  • [56] L. Fried: Global wind statistics 2015, Global Wind Energy Council (GWEC), Belgium, Brussels, 2016.
  • [57] K. Badyda, J. Lewandowski: Uwarunkowania wzrostu zapotrzebowania na gaz dla energetyki i ciepłownictwa, Rynek Energii 5, pp. 2-7, 2009.
  • [58] A. Gajewski, A. Wójcicki: Międzynarodowy projekt CASTOR a problematyka sekwestracji, czyli ujmowania i magazynowania CO2 w Polsce, Przegląd Geologiczny 54(4), pp. 270-272, 2005.
  • [59] D. T. Bradshaw: Pumped hydroelectric storage (PHS) and compressed air energy storage (CAES), Power Engineering Society Summer Meeting, 2000. IEEE, Vol. 3, pp. 1551-1573, 2000.
  • [60] S. Wang, J. Yu: Optimal sizing of the CAES system in a power system with high wind power penetration, International Journal of Electrical Power & Energy Systems 37(1), pp. 117-125, 2012.
  • [61] P. Denholm, G. L. Kulcinski: Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems, Energy Conversion and Management 45(13), pp. 2153-2172, 2004.
  • [62] J. Skorek, K. Banasiak: Thermodynamic analysis of the compressed-air energy storage systems operation, Inzynieria Chemiczna I Procesowa 27(1), pp. 187-200, 2006.
  • [63] Aspen HYSYS User Guide, Burlington, MA, Aspen Technology.
  • [64] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz: Risk analysis related to the implementation of a CO2 separation technology in a coal-fired supercritical combined heat and power plant, Rynek Energii 110(1), pp. 90-95, 2014.
  • [65] A. Grzebielec, A. Rusowicz, J. Kuta: Role of installations based on heat pumps cycles in virtual power plants, Rynek Energii 110(1), pp. 40-45, 2014.
  • [66] J. Kupecki: Modeling platform for a micro-CHP system with SOFC operating under load changes, Applied Mechanics and Materials 607, pp. 205-208, 2014.
  • [67] H. Lund, G. Salgi: The role of compressed air energy storage (CAES) in future sustainable energy systems, Energy Conversion and Management 50(5), pp. 1172-1179, 2009.
  • [68] H. Lund, G. Salgi, B. Elmegaard, A. N. Andersen: Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices, Applied Thermal Engineering 29(5), pp. 799-806, 2009.
  • [69] A. Skorek-Osikowska, Ł. Bartela, J. Kotowicz: A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units, Energy Conversion and Management 92, pp. 421-430, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fd2856c-2375-4868-bb82-6b64645d036e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.