PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of changes in fuel delivery rate by electromagnetic injectors in a common rail system during simulated operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to determine changes in fuel delivery rate by common rail system injectors during their simulated operation on a test stand. Four Bosch injectors used, among others, in Fiat 1.3 Multijet engines were tested. The injectors were operated on a test rig at room temperature for 500 hours (more than 72 million work cycles). During the test, pressure and injection frequency were changed. Changes in the operating parameters were estimated based on obtained injection characteristics and effective flow area determined thereby. The observed changes in fuel delivery rate were compared with results of the surface analysis of control valves and nozzle needles. Despite the stated lack of wear, significant changes in the dynamics of injector operation were observed, particularly at short injection times. Small pilot injections cannot be corrected by the fuel injection control system because they do not affect the changes in torque; however, they do affect the combustion process. This creates conditions for increased emission of toxic exhaust components.
Słowa kluczowe
Rocznik
Strony
352--358
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
Bibliografia
  • 1. Agarwal A K, Singh A P, Maurya R K et al. Combustion characteristics of a common rail direct injection engine using different fuel injection strategies. International Journal of Thermal Sciences 2018; 134: 475-484, https://doi.org/10.1016/j.ijthermalsci.2018.07.001.
  • 2. Asi O. Failure of a diesel engine injector nozzle by cavitation damage. Engineering Failure Analysis 2006; 13(7): 1126-1133, https://doi.org/10.1016/j.engfailanal.2005.07.021.
  • 3. Birgel A, Ladommatos N, Aleiferis P et al. Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review. SAE Technical Paper 2008-01-2383 2008, https://doi.org/10.4271/2008-01-2383.
  • 4. Ferrari A, Mittica A, Paolicelli F, Pizzo P. Hydraulic Characterization of Solenoid-actuated Injectors for Diesel Engine Common Rail Systems. Energy Procedia 2016; 101: 878-885, https://doi.org/10.1016/j.egypro.2016.11.111.
  • 5. Gumus M, Sayin C, Canakci M. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends. Fuel 2012; 95: 486-494, https://doi.org/10.1016/j.fuel.2011.11.020.
  • 6. Hofmann O, Han S, Rixen D. Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation 2017, https://doi.org/10.4271/2017-01-0543.
  • 7. Hofmann O, Strauß P, Schuckert S et al. Identification of Aging Effects in Common Rail Diesel Injectors Using Geometric Classifiers and Neural Networks. SAE Technical Paper 2016-01-0813 2016, https://doi.org/10.4271/2016-01-0813.
  • 8. Hunicz J, Beidl C, Knost F et al. Injection Strategy and EGR Optimization on a Viscosity-Improved Vegetable Oil Blend Suitable for Modern Compression Ignition Engines. SAE Int. J. Adv. & Curr. Prac. in Mobility 2020; 3(1): 419-427, https://doi.org/10.4271/2020-01-2141.
  • 9. Hunicz J, Matijošius J, Rimkus A et al. Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel 2020; 268: 117350, https://doi.org/10.1016/j.fuel.2020.117350.
  • 10. Ignaciuk P, Gil L. Uszkodzenia kawitacyjne w silnikach spalinowych. Autobusy 2014; 5: 63-65.
  • 11. Jindal S, Nandwana B P, Rathore N S, Vashistha V. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Applied Thermal Engineering 2010; 30(5): 442-448, https://doi.org/10.1016/j.applthermaleng.2009.10.004.
  • 12. Klonecki W. Elementy statystyki dla inżynierów. Wrocław, O. Wyd. Politechniki Wrocławskiej: 1996.
  • 13. Knefel T. Ocena techniczna wtryskiwaczy Common Rail na podstawie doświadczalnych badań przelewów. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(1): 42-53.
  • 14. Kurczyński D, Adrian A. Analiza uszkodzeń układu zasilania Common Rail. Logistyka 2014; 6: 6406-6419.
  • 15. Lacey P, Gail S, Kientz J M et al. Fuel Quality and Diesel Injector Deposits. SAE Int. J. Fuels Lubr. 2012; 5(3): 1187-1198, https://doi.org/10.4271/2012-01-1693.
  • 16. Lazarev V, Lomakin G, Lazarev E et al. Optimum Design Of Nozzles' Tribology Systems Of A Diesel Engine Fuel Injector With High Values Of Rail Pressure. WIT Transactions on Ecology and the Environment 2015; 195: 379-389, https://doi.org/10.2495/ESUS150321.
  • 17. Liaquat A M, Masjuki H H, Kalam M A, Rizwanul Fattah I M. Impact of biodiesel blend on injector deposit formation. Energy 2014; 72:813-823, https://doi.org/10.1016/j.energy.2014.06.006.
  • 18. Ligier K, Oczkowski A. Analiza uszkodzeń wybranych elementów aparatury wtryskowej silników wysokoprężnych. Logistyka 2015; (4):4473-4479.
  • 19. Mohan B, Yang W, Yu W et al. Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine. Applied Energy 2015; 160: 737-745, https://doi.org/10.1016/j.apenergy.2015.08.034.
  • 20. Niewczas A, Gil L, Ignaciuk P. Analiza procesów zużycia tribologicznego elementów układu wtryskowego silnika o zapłonie samoczynnym zasilanego olejami roślinnymi. Zeszyty Naukowe WSEI. Seria Transport i Informatyka 2011; 1(1): 5-21.
  • 21. Nishimura T, Satoh K, Takahashi S, Yokota K. Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine. SAE Technical Paper 981929 1998, https://doi.org/10.4271/981929.
  • 22. Paykani A, Garcia A, Shahbakhti M et al. Reactivity controlled compression ignition engine: Pathways towards commercial viability. Applied Energy 2021; 282: 116174, https://doi.org/10.1016/j.apenergy.2020.116174.
  • 23. Payri R, Martí-Aldavarí P, Montiel T, Viera A. Influence of aging of a diesel injector on multiple injection strategies. Applied Thermal Engineering 2020; 181: 115891, https://doi.org/10.1016/j.applthermaleng.2020.115891.
  • 24. Payri R, Salvador F J, Gimeno J, Montiel T. Aging of a Multi-Hole Diesel Injector and Its Effect on the Rate of Injection. SAE Int. J. Adv. & Curr. Prac. in Mobility 2020; 2(6): 3347-3355, https://doi.org/10.4271/2020-01-0829.
  • 25. Pehan S, Jerman M S, Kegl M, Kegl B. Biodiesel influence on tribology characteristics of a diesel engine. Fuel 2009; 88(6): 970-979, https://doi.org/10.1016/j.fuel.2008.11.027.
  • 26. Pielecha I, Skowron M, Mazanek A. Evaluation of the injectors operational wear process based on optical fuel spray analysis. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(1): 83-89, https://doi.org/10.17531/ein.2018.1.11.
  • 27. Praca zbiorowa. Zasobnikowe układy wtryskowe Common Rail. Warszawa, WKŁ: 2009.
  • 28. Reitz R D, Ogawa H, Payri R et al. IJER editorial: The future of the internal combustion engine. International Journal of Engine Research 2019; 21(1): 3-10, https://doi.org/10.1177/1468087419877990.
  • 29. Schuckert S, Hofmann O, Wachtmeister G. Experimental investigation into simulated aging effects of common-rail injector nozzles:Influences on injection rate, spray characteristics, and engine performance. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering 2019; 234(2-3): 349-362, https://doi.org/10.1177/0954407019855289.
  • 30. Stanik W, Jakóbiec J, Mazanek A. Engine tests for coking and contamination of modern multi-injection injectors of high-pressure fuel supplies compression-ignition engine. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(1): 131-136, https://doi.org/10.17531/ein.2018.1.17.
  • 31. Stępień Z. A study of factors influencing the formation of harmful deposits in the diesel engine injectors. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(3): 331-337, https://doi.org/10.17531/ein.2017.3.3.
  • 32. Stoeck T, Osipowicz T. Analiza uszkodzeń i stopnia zużycia wtryskiwaczy Common Rail Bosch. Autobusy : technika, eksploatacja, systemy transportowe 2013; 14(10): 240-244.
  • 33. Urzędowska W, Stępień Z. Badania wpływu jakości oleju napędowego na uszkodzenia układu wysokociśnieniowego wtrysku paliwa. Nafta-Gaz 2009; R. 65, nr: 789-796.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fcf1e35-62c6-482a-80b0-e691487079d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.