PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrodialytic Recovery of Ammonium and Phosphate Ions in Fertilizer Industry Wastewater by Using a Continuous-Flow Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wastewater stream generated from fertilizer industries generally contains high concentrations of ammonium and phosphate ions. This stream offers an opportunity for the electrodialytic process to treat and recover these concentrated nutrients before releasing them to the environment. Therefore, this study aims at evaluating the performance of a continuous-flow electrodialysis reactor for ionic recovery of ammonium and phosphate. The results show that the pH and phosphate mass loading affected the overall performance of the reactor. Magnesium was added to the recovered ammonium and phosphate with the lowest concentration of impurity ions. The molar ratio of magnesium:ammonium:phosphate at 2.5:13:1 produced 57.3% of struvite (by mass) and 42.7% of other precipitate products, i.e., most likely fluorapatite and MgF2.
Rocznik
Strony
255--263
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo-Engineering Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo-Engineering Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo-Engineering Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Bibliografia
  • 1. Ali M.B., Mnif A., Hamrouni B., & Dhahbi M. 2010. Electrodialytic desalination of brackishwater: effect of process parameters and water characteristics. Ionics, 16 (7), 621-629.
  • 2. Atkins P., & de Paula J. 2006. Physical chemistry. W. H. Freeman, New York.
  • 3. Bagastyo A.Y., Anggrainy A.D., Nindita C.S., & Warmadewanthi 2017. Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater. Sustainable Environmental Research, 27, 230-237.
  • 4. Canham G.R., & Overton T. 2010. Descriptive inorganic chemistry. W.H. Freeman and Co, New York.
  • 5. Deng L., Liu Y., Huang T., & Sun T. 2016. Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal, 287, 83-91.
  • 6. Engelke J.L., & Strain H.H. 1954. Electrical mobility of phosphate ions in paper electrochromatography. Analytical Chemistry, 26 (1872), 4.
  • 7. Kabdasli I., Parsons S.A., & Tunay O. 2006. Effect of major ions on induction time of struvite precipitation. Croatica Chemica Acta, 79 (2), 243-251.
  • 8. Karimi L. 2015. Theoretical, experimental, and predictive model for ion removal in electrodialysis and electrodialysis reversal. Ph.D. Thesis, New Mexico State University, Las Cruces.
  • 9. Kim J.O., Jung J.T., & Chung J.W. 2007. Treatment performance of metal membrane microfiltration and electrodialysis integrated system for wastewater reclamation. Desalination, 202, 343-350.
  • 10. Momberg G., & Oellermann R. 1992. The removal of phosphate by hydroxyapatite and struvite crystallisation in South Africa. Water Science and Technology, 26, 987-996.
  • 11. Mondor M., Masse L., Ippersiel D., Lamarche F., & Masse D. 2008. Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresource Technology, 99 (15), 7363-8.
  • 12. Mulder M. 1996. Basic Principles of membrane technology, 2nd ed. Kluwer Academic Publisher, Dordrecht.
  • 13. Novalin S., Kongbangkerd T., Reisinger M., & Pruksasri S. 2017. Integration of electrodialysis into an enzymatic synthesis for the separation of phosphate from glucose-1-phosphate. Separation and Purification Technology, 182, 224-229.
  • 14. Rahman M.M., Salleh M.A., Rashid U., Ahsan A., Hossain M.M., & Ra C.S. 2011. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Journal of Hazardous Material, 186, 2026-2030.
  • 15. Rahman M.M., Liu Y.H., Kwag J.H., & Ra C.S. 2014. Production of slow release crystal fertilizer from wastewater through struvite crystallization A review. Arabian Journal of Chemical, 7, 139-155.
  • 16. Strathmann H. 2004. Assessment of electrodialysis water desalination process costs, material discourse lectures. University of Stuttgart, Germany.
  • 17. Vanysek P. 2002. Ionic conductivity and diffusion At infinite dilution. In: CRC Handbook of Chemistry and Physics, 83rd Edn; ed. D. R. Lide. CRC Press, Boca Raton.
  • 18. Wang X., Wang Y., Zhang X., Feng H., Li C., & Xu T. 2013. Phosphate recovery from excess sludge by conventional electrodialysis (CED) and electrodialysis with bipolar membranes (EDBM). Industrial &Engineering Chemistry Research, 52(45), 15896-15904.
  • 19. Wang X., Zhang X., Wang Y., Du Y., Feng H., & Xu T. 2015. Simultaneous recovery of ammonium and phosphorus via the integration of electrodialysis with struvite reactor. Journal of Membrane Science, 490, 65-71.
  • 20. Warmadewanthi & Liu J.C. 2009. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64 (1-3), 368-373.
  • 21. Zhang Y., Desmidt E., Van Looveren A., Pinoy L., Meesschaert B., & Van der Bruggen B. 2013. Phosphate separation and recovery from wastewater by novel electrodialysis. Environmental Science & Technology, 47 (11), 5888–5895.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fcd6866-dcee-4bbf-a050-38969e8a7924
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.