PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Katalizatory złotowe osadzone na zeolitach

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Gold catalysts supported on zeolites
Języki publikacji
EN
Abstrakty
EN
Heterogeneous gold catalysis is a relatively young but dynamically developing field of chemistry. At the end of the 1980s, Masatake Haruta and Graham Hutchings provided experimental evidence of high activity of supported gold catalysts in CO oxidation and acetylene hydrochlorination. Thus, these two researchers challenged the prevailing chemists’ belief that gold is almost completely chemically inert and catalytically inactive. Since then, gold catalysis has been constantly in the centre of attention of a wide array of scientists from around the world. However, there are still many questions about the nature of catalysts containing this noble metal, which inspires in-depth research in this field. From among various potential supports for gold heterogeneous catalysts, zeolites have drawn much attention thanks to several unique properties of this group of materials, among which the most important are high thermal stability and the presence of a system of pores of strictly defined sizes. Zeolites have extremely large surface area, which is desirable to obtain high dispersion of the active phase. The article provides a concise overview of the methods of gold nanoparticles deposition on zeolitic supports and catalytic applications of such materials. The first chapter sheds light on the properties of bulk and nano-sized Au and depicts the background of gold catalysis development. In the following part, a brief description of zeolites and their properties is delivered. The third chapter is devoted entirely to the description of several preparation methods of zeolite-supported gold catalysts and their applications in different catalytic processes. The following post-synthetic methods of zeolite modification with gold are described: impregnation, ion exchange, deposition-reduction, chemical vapour deposition, and grafting. The most important advantages and disadvantages of each method are summarized. The article concludes with a résumé of literature reports concerning the use of zeolitesupported gold catalysts in various processes. Special attention was paid to selective oxidation of alcohols and biomass-derived chemicals (e.g. glucose).
Rocznik
Strony
1259--1293
Opis fizyczny
Bibliogr. 113 poz., rys., tab., wykr.
Twórcy
  • Wydział Chemii, Zakład Katalizy Heterogenicznej, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
  • [1] M.T. Sienko, R.A. Plane, Chemia. Podstawy i własności, Wydawnictwa Naukowo-Techniczne, Warszawa, 1980.
  • [2] W.M. Haynes, D.R. Libe, T.J. Bruno, CRC Handbook of Chemistry and Physics 97th Edition, 2016.
  • [3] K.H. Lautenschläger, W. Schröter, A. Wanninger, Nowoczesne Kompendium Chemii, PWN, Warszawa, 2007.
  • [4] C.W. Corti, R. Holliday, Gold Science and Application, 2010.
  • [5] A. Bielański, Podstawy Chemii Nieorganicznej, PWN, Warszawa, 2017.
  • [6] R.W. Schmutzler, H. Hoshino, R. Fischer, F. Hensel, Berichte der Bunsengesellschaft für Phys. Chemie, 1976, 80, 107.
  • [7] A. Świderska-Środa, W. Łojkowski, M. Lewandowska, K.J. Kurzydłowski, Świat Nanocząstek, PWN, Warszawa, 2016.
  • [8] T. Ishida, T. Murayama, A. Taketoshi, M. Haruta, Chem. Rev., 2020, 120, 464.
  • [9] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Imperial College Press, Londyn, 2006.
  • [10] A. Taketoshi, M. Haruta, Chem. Lett., 2014, 43, 380.
  • [11] S. Peiris, J. McMurtrie, H.Y. Zhu, Catal. Sci. Technol., 2016, 6, 320.
  • [12] V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, J. Phys. Condens. Matter, 2017, 29, 203002.
  • [13] H. Yu, Y. Peng, Y. Yang, Z. Li, Comput. Mater., 2019, 5, 45.
  • [14] E. Petryayeva, U.J. Krull, Anal. Chim. Acta, 2011, 706, 8.
  • [15] S. Linic, P. Christopher, D.B. Ingram, Nat. Mater., 2011, 10, 911.
  • [16] P. Atkins, J. de Paula, Chemia Fizyczna, PWN, Warszawa, 2016.
  • [17] G.B. Sigal, M. Mrksich, G.M. Whitesides, Langmuir, 1997, 13, 2749.
  • [18] J. Zhao, S.C. Nguyen, R. Ye, B. Ye, H. Weller, A.P. Alivisatos, F.D. Toste, ACS Cent. Sci., 2017, 3, 482.
  • [19] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, J. Am. Chem. Soc., 2012, 134, 15033.
  • [20] S. Alex, A. Tiwari, J. Nanosci. Nanotechnol., 2015, 15, 1869.
  • [21] P.N. Njoki, I.I.S. Lim, D. Mott, H.Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C. J. Zhong, J. Phys. Chem. C, 2007, 111, 14664.
  • [22] E. Hamidi-Asl, F. Dardenne, S. Pilehvar, R. Blust, K. De Wael, Chemosensors, 2016, 4, 1.
  • [23] P. García Calavia, G. Bruce, L. Pérez-García, D.A. Russell, Photochem. Photobiol. Sci., 2018, 17, 1534.
  • [24] M. Liu, S. Yu, L. an Hou, X. Hu, J. Mater. Sci. Mater. Electron., 2019, 30, 9087.
  • [25] J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, J. Phys. Chem. Lett., 2011, 2, 2840.
  • [26] C. Wang, D. Astruc, Chem. Soc. Rev., 2014, 43, 7188.
  • [27] G.C. Bond, D.T. Thompson, Catal. Rev., 2011, 41, 319.
  • [28] M. Chen, D.W. Goodman, Chem. Soc. Rev., 2008, 37, 1860.
  • [29] A.S.K. Hashmi, G.J. Hutchings, Angew. Chemie - Int. Ed., 2006, 45, 7896.
  • [30] G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, J. Chem. Soc. Chem. Commun., 1973, 13, 444.
  • [31] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 1987, 16, 405.
  • [32] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal., 1989, 115, 301.
  • [33] G.J. Hutchings, J. Catal., 1985, 295, 292.
  • [34] G.J. Hutchings, Catal. Today, 2005, 100, 55.
  • [35] M. Haruta, Nature, 2005, 437, 1098.
  • [36] P. Johnston, N. Carthey, G.J. Hutchings, J. Am. Chem. Soc., 2015, 137, 14548.
  • [37] K. Shinoda, Chem. Lett., 1975, 4, 219.
  • [38] G.J. Hutchings, ACS Cent. Sci., 2018, 4, 1095.
  • [39] B. Nkosi, N.J. Coville, G.J. Hutchings, J. Chem. Soc. Chem. Commun., 1988, 71.
  • [40] B. Nkosi, N.J. Coville, G.J. Hutchings, M.D. Adams, J. Friedl, F.E. Wagner, J. Catal., 1991, 128, 366.
  • [41] A.S. Sharma, H. Kaur, D. Shah, RSC Adv., 2016, 6, 28688.
  • [42] X.Y. Liu, A. Wang, T. Zhang, C.-Y. Mou, Nano Today, 2013, 8, 403.
  • [43] L. Wolski, I. Sobczak, M. Ziolek, J. Catal., 2017, 354, 100.
  • [44] L. Wolski, A. Walkowiak, M. Ziolek, Catal. Today, 2019, 333, 54.
  • [45] X. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin, H. Cheng, J.M. Chen, J.F. Lee, T.S. Lin, J. Am. Chem. Soc., 2012, 134, 10251.
  • [46] Q. Fu, T. Wagner, Surf. Sci. Rep., 2007, 62, 431.
  • [47] D.W. Goodman, Catal. Letters, 2005, 99, 1.
  • [48] M. Comotti, W.-C. Li, B. Spliethoff, F. Schüth, J. Am. Chem. Soc., 2006, 128, 917.
  • [49] P. Johnston, N. Carthey, G.J. Hutchings, J. Am. Chem. Soc., 2015, 137, 14548.
  • [50] Q. Fu, A. Weber, M. Flytzani-Stephanopoulos, Catal. Letters, 2001, 77, 87.
  • [51] L. Prati, M. Rossi, J. Catal., 1998, 176, 552.
  • [52] L.Q. Nguyen, C. Salim, H. Hinode, Appl. Catal. B Environ., 2010, 96, 299.
  • [53] E. Tebandeke, C. Coman, K. Guillois, G. Canning, E. Ataman, J. Knudsen, L.R. Wallenberg, H. Ssekaalo, J. Schnadt, O. F. Wendt, Green Chem., 2014, 16, 1586.
  • [54] J. Edwards, B. Solsona, P. Landon, A. Carley, A. Herzing, C. Kiely, G. Hutchings, J. Catal., 2005, 236, 69.
  • [55] S. Carrettin, J. Guzman, A. Corma, Angew. Chemie Int. Ed., 2005, 44, 2242.
  • [56] A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, L. Prati, G.J. Hutchings, Acc. Chem. Res., 2015, 48, 1403.
  • [57] S. Guo, Q. Fang, Z. Li, J. Zhang, J. Zhang, G. Li, Nanoscale, 2019, 11, 1326.
  • [58] H. van Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen, Introduction to zeolite science and practice, Elsevier, 2001.
  • [59] M. Ziółek, I. Nowak, Kataliza heterogeniczna. Wybrane zagadnienia, Wydawnictwo Naukowe UAM, Poznań, 1999.
  • [60] R. Szostak, Molecular Sieves. Principles of Synthesis and Identififaction, Springer US, Nowy Jork, 1989.
  • [61] F.A. Mumpton, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 3463.
  • [62] www.iza-structure.org, dostęp z dnia 28.08.2021
  • [63] J.D. Sherman, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 3471.
  • [64] D.M. Flanagan, Mineral Commodity Summaries 2019, 2019, vol. 3.
  • [65] S. Wang, Y. Peng, Chem. Eng. J., 2010, 156, 11.
  • [66] P. Florczak, E. Janiszewska, K. Kędzierska, S. Kowalak, Wiadomości Chem., 2011, 65, 427.
  • [67] R.M. Barrer, J. Chem. Soc., 1948, 2158.
  • [68] D.W. Breck, W.G. Eversole, R.M. Milton, T.B. Reed, T.L. Thomas, J. Am. Chem. Soc., 1956, 78, 5963.
  • [69] R. Chaves Lima, L. Bieseki, P. Vinaches Melguizo, S.B. Castellã Pergher, Environmentally Friendly Zeolites, 2019.
  • [70] A.W. Chester, E.G. Derouane, Zeolite Characterization and Catalysis. A Tutorial, 2010.
  • [71] W.J. Roth, P. Nachtigall, R.E. Morris, J. Čejka, Chem. Rev., 2014, 114, 4807.
  • [72] S. Mintova, J. Grand, V. Valtchev, Comptes Rendus Chim., 2016, 19, 183.
  • [73] X. Jia, W. Khan, Z. Wu, J. Choi, A. C.K. Yip, Adv. Powder Technol., 2019, 30, 467.
  • [74] J. Rouquerol, D. Ravnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem., 1994, 66, 1739.
  • [75] D. Coster, A.L. Blumenfeld, J.J. Fripiat, J. Phys. Chem., 1994, 98, 6201.
  • [76] J.P. Pariente, M. Sánchez-Sánchez, Structure and Reactivity of Metals in Zeolite Materials, 2018, vol. 178.
  • [77] L. Liu, R. Arenal, D.M. Meira, A. Corma, Chem. Commun., 2019, 55, 1607.
  • [78] G. Ertl, H. Knozinger, J. Weitkamp, Preparation of Solid Catalysts, Wiley-VCH, Weinheim, 1999.
  • [79] N.M. Deraz, J. Ind. Environ. Chem., 2018, 2, 19.
  • [80] J. Haber, J.H. Block, B. Delmon, Pure Appl. Chem., 1995, 67, 1257.
  • [81] B. Grzybowska-Świerkosz, Elementy katalizy heterogenicznej, Wydawnictwo Naukowe PWN, Warszawa, 1993.
  • [82] G. Li, J. Edwards, A.F. Carley, G.J. Hutchings, Catal. Today, 2006, 114, 369.
  • [83] D. Guillemot, V.Y. Borovkov, V.B. Kazansky, M. Polisset-Thfoin, J. Fraissard, J. Chem. Soc. Faraday Trans., 1997, 93, 3587.
  • [84] T. Sanada, C. Murakami, K. Góra-Marek, K. Iida, N. Katada, K. Okumura, Catalysts, 2013, 3, 599.
  • [85] X. Liu, P. Mäki-Arvela, A. Aho, Z. Vajglova, V.M. Gun’ko, I. Heinmaa, N. Kumar, K. Er nen, T. Salmi, D.Y. Murzin, Molecules, 2018, 23, 1.
  • [86] I. Manninger, Z. Zhan, X.L. Xu, Z. Paál, J. Mol. Catal., 1991, 66, 223.
  • [87] B. Lim, H. Kobayashi, T. Yu, J. Wang, M. J. Kim, Z. Li, M. Rycenga, Y. Xia, J. Am. Chem. Soc., 2010, 132, 2506.
  • [88] A. Walkowiak, L. Wolski, M. Ziolek, Molecules, 2020, 25, 5781.
  • [89] M. El-Roz, L. Lakiss, I. Telegeiev, O.I. Lebedev, P. Bazin, A. Vicente, C. Fernandez, V. Valtchev, ACS Appl. Mater. Interfaces, 2017, 9, 17846.
  • [90] R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, Wiley, Singapur, 2007.
  • [91] J.C. Fierro-Gonzalez, B.C. Gates, J. Phys. Chem. B, 2004, 108, 16999.
  • [92] J.C. Fierro-Gonzalez, B.G. Anderson, K. Ramesh, C.P. Vinod, J.W. Niemantsverdriet, B.C. Gates, Catal. Letters, 2005, 101, 265.
  • [93] X. Rao, M. Tatoulian, C. Guyon, S. Ognier, C. Chu, A. Abou Hassan, Nanomaterials, 2019, 9, 1034.
  • [94] K.K. Sharma, T. Asefa, Angew. Chemie Int. Ed., 2007, 46, 2879.
  • [95] A. Wojtaszek-Gurdak, I. Sobczak, K. Grzelak, M. Ziolek, U. Hartfelder, J.A. van Bokhoven, Mater. Res. Bull., 2016, 76, 169.
  • [96] I. Sobczak, M. Rydz, M. Ziolek, Mater. Res. Bull., 2013, 48, 795.
  • [97] I.H.A. El Maksod, A. Al-Shehri, S. Bawaked, M. Mokhtar, K. Narasimharao, Mol. Catal., 2017, 441, 140.
  • [98] J. Chen, J. Lin, Y. Kang, W. Yu, C. Kuo, B. Wan, Appl. Catal. A Gen., 2005, 291, 162.
  • [99] E. Smolentseva, N. Bogdanchikova, A. Simakov, A. Pestryakov, M. Avalos, M.H. Farias, A. Tompos, V. Gurin, J. Nanosci. Nanotechnol., 2007, 7, 1882.
  • [100] E.R. León, E.L. Rodríguez, C.R. Beas, G. Plascencia-Villa, R.A.I. Palomares, J. Nanomater., 2016, 2016, 1.
  • [101] A. Walkowiak, J. Wolska, A. Wojtaszek-Gurdak, I. Sobczak, L. Wolski, M. Ziolek Materials 2021, 14, 5250.
  • [102] K.T. Højholt, A.B. Laursen, S. Kegnæs, C.H. Christensen, Top. Catal., 2011, 54, 1026.
  • [103] X. Zhang, X. Ke, H. Zhu, Chem. Eur. J., 2012, 18, 8048.
  • [104] T. Lu, X. Fu, L. Zhou, Y. Su, X. Yang, L. Han, J. Wang, C. Song, ACS Catal., 2017, 7, 7274.
  • [105] J. Mielby, J.O. Abildstrøm, F. Wang, T. Kasama, C. Weidenthaler, S. Kegnæs, Angew. Chemie - Int. Ed., 2014, 53, 12513.
  • [106] J. Wolska, A. Walkowiak, I. Sobczak, L. Wolski, M. Ziolek, Catal. Today 2021, 382, 4-60.
  • [107] J. Cai, H. Ma, J. Zhang, Q. Song, Z. Du, Y. Huang, J. Xu, Chem. - A Eur. J., 2013, 19, 14215.
  • [108] J. He, C. Lai, L. Qin, B. Li, S. Liu, L. Jiao, Y. Fu, D. Huang, L. Li, M. Zhang, X. Liu, H. Yi, L. Chen, Z. Li, Chemosphere, 2020, 256, 127083.
  • [109] Y. Liu, C. Zhao, B. Sun, H. Zhu, W. Xu, Appl. Catal. A Gen., 2021, 624, 118329.
  • [110] R. Wojcieszak, C. Ferraz, J. Sha, S. Houda, L. Rossi, S. Paul, Catalysts, 2017, 7, 352.
  • [111] J.J. Bozell, G.R. Petersen, Green Chem., 2010, 12, 539.
  • [112] X. Zhang, X. Ke, A. Du, H. Zhu, Sci. Rep., 2014, 4, 1-6.
  • [113] X. Zhang, A. Du, H. Zhu, J. Jia, J. Wang, X. Ke, Chem. Commun., 2014, 50, 13893-13895.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fcd08a2-e9ce-4995-b76e-a2ad30bbccf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.