PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of wind energy resources using artificial neural networks – case study at Łódź Hills

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to answer the question: Are the Łódź Hills useful for electrical energy production from wind energy or not? Due to access to short-term data related to wind measurements (the period of 2008 and 2009) from a local meteorological station, the measure – correlate – predict approach have been applied. Long-term (1979‒2016) reference data were obtained from ECWMF ERA-40 Reanalysis. Artificial neural networks were used to calculate predicted wind speed. The obtained average wind speed and wind power density was 4.21 ms–1 and 70 Wm–1, respectively, at 10 m above ground level (5.51 ms–1, 170 Wm–1 at 50 m). From the point of view of Polish wind conditions, Łódź Hills may be considered useful for wind power engineering.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 46 poz., wykr., rys., tab.
Twórcy
  • Electrotechnical Institute, Pożaryskiego St. 28, 04-703 Warsaw, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Faculty of Production Engineering, Nowoursynowska St. 164, 02-787 Warsaw, Poland
Bibliografia
  • [1] J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective”, Bull. Pol. Ac.: Tech. 65(6), 859‒869 (2017).
  • [2] P.E. Morthorst, H. Auer, A. Garrad, and I. Blanco, “Wind Energy – The Facts, Part III The Economics of Wind Power”, European Wind Energy Association, www.wind-energy-thefacts. org (2009). [Access date: 9 February 2018].
  • [3] C. Mone, M. Hand, M. Bolinger, J. Rand, D. Heimiller, and J. Ho, “2015 Cost of Wind Energy Review”, Technical Report NREL/TP-6A20‒66861, National Renewable Laboratory (2017). [Access date: 9 February 2018].
  • [4] EU Renewable Energy Directive 2009/28/EC, (2009).
  • [5] E. Hau, “Wind Turbines: Fundamentals, Technologies, Application, Economics”, Springer (2006),
  • [6] A. Zaharim, S.K. Najid, A.M. Razali, and K. Sopian, “The Suitability of Statistical Distribution in Fitting Wind Speed Data”, WSEAS Transactions on Mathematics 7, 718‒727 (2008).
  • [7] L. Landberg, L. Myllerup, O. Rathmann, E.L. Petersen, B.H. Jørgensen, B.J. Niels, et al. “Wind resource estimation – an overview”, Wind Energy 6, 261–71 (2003).
  • [8] T. Wizelius, “Developing Wind Power Projects: Theory and Practice”, Taylor & Francis Ltd (2007).
  • [9] M.A. Lackner, A.L. Rogers, and J.F. Manwell, “The round robin ite assessment method: A new approach to wind energy site assessment”, Renewable Energy 33, 2019‒2026 (2003).
  • [10] M. Zhang, “Wind Resource Assessment and Micrositing: Science and Engineering”, Wiley (2015).
  • [11] “Atlas of the Republic of Poland” (in Polish), Principal Geodesist of Poland, Warsaw, (1993‒1997).
  • [12] J. Kazak, J. van Hoof, and S. Szewranski, “Challenges in the wind turbines location process in Central Europe – The use of spatial decision support systems”, Renewable and Sustainable Energy Reviews 76, 425‒433 (2017).
  • [13] D. Czekalski, R. Korupczyński, and P. Obstawski, “Researching on the wind energy resources at the territory of Agricultural Experimental Institute of Warsaw University of Life Sciences at Żelazna” (in Polish), Papers of Rzeszów University of Technology. Civil and Environmental Engineering, 47, 63‒70 (2008).
  • [14] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, and R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, D. Joseph, “The NCEP/NCAR 40-Year Reanalysis Project”, Bull. Amer. Meteor. Soc. 77, 437–471 (1996).
  • [15] F. Mesinger, G. DiMego, E. Kalnay, K. Mitchell, P.C. Shafran, W. Ebisuzaki, D. Jović, J. Woollen, E. Rogers, E. H. Berbery, M.B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi, “North American Regional Reanalysis”, Bull. Amer. Meteor. Soc. 87, 343–360 (2006).
  • [16] S. Szot and M. Kosowski, “A comparison of the radiosonde data and the data set basing on the NCEP-NCAR reanalysis” (in Polish), Geographical Studies 136, 31‒44 (2014).
  • [17] D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: configuration and performance of the data assimilation system”, Q.J.R. Meteorol. Soc. 137, 553–597 (2011).
  • [18] A. Derrick, “Development of the Measure Correlate Predict Strategy for Site Assessment”, In European Community Wind Energy Conference, Proceedings of the 1993 International Conference, Lubeck-Travemunde, Germany, 8–12 March 1993, Garrad, A.D., Palz, W., Screller, S., Eds.; Stephens, H.S. and Associates: Bedford, UK, 681–685 (1993).
  • [19] A.L. Rogers, J.W. Rogers, and J.F. Manwell, “Comparison of the performance of four measure–correlate–predict algorithms”, Journal of Wind Engineering and Industrial Aerodynamics 93, 243‒264 (2005).
  • [20] S.M. Weekes, A.S. Tomlin, S.B. Vosper, A.K. Skea, M.L. Gallani, and J.J. Standen, “Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict”, Renewable Energy 81, 760‒769 (2015).
  • [21] M.L. Thøgersen, M. Motta, T. Sørensen, and P. Nielsen, “Measure- Correlate-Predict Methods: Case Studies and Software Implementation”, Proceeding of European Community Wind Energy Conference (2007).
  • [22] S. Velazquez, J.A. Carta, and J. Matias, “Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands”, Applied Energy 88, 3869‒3881 (2011).
  • [23] J. Zhang , S. Chowdhury, A. Messac, and B. Hodge, “Assessing Long-TermWind Conditions by Combining Different Measure-Correlate-Predict Algorithms”, ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 3A: 39th Design Automation Conference (2013).
  • [24] S. Diaz, J.A. Carta, and J.M. Matias, “Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study”, Energy Conversion and Management 140, 334 – 354 (2017).
  • [25] J.A. Carta, S. Velázquez, and P. Cabrera, “A review of measurecorrelate- predict (MCP) methods used to estimate long-term wind characteristics at a target site”, Renewable and Sustainable Energy Reviews 27, 362 – 400 (2013).
  • [26] S.M. Weekes, and A.S. Tomlin, “Data efficient measure-correlatepredict approaches to wind resource assessment for smallscale wind energy”, Renewable Energy 63, 162‒171 (2014).
  • [27] V. Borget, P.A. Monnier, and M. Strack, “Long-term Scaling of Site Measurements: Evaluation of Long-Term Meteorological Data in France and Comparison of Correlation Methods”, DEWI Magazin 30, 61‒68 (2007).
  • [28] D. Rajeev, D. Dinakaran, and S.C.E. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of AISI4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553‒559 (2017).
  • [29] M. Lefik, “Some aspects of application of artificial neural network for numerical modeling in civil engineering”, Bull. Pol. Ac.: Tech. 61(1), 39‒50 (2013).
  • [30] http://documentation.statsoft.com/STATISTICAHelp.aspx? path=SANN/Overview/SANNOverviewsTrainingofNeural Netowrks. [Access date: 9 February 2018].
  • [31] A. Rappaport, “Sensitivity Analysis in Decision Making”, The Accounting Review 42, 441–456 (1967).
  • [32] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, “Global Sensitivity Analysis. The Primer”, John Wiley & Sons, (2008).
  • [33] S. Rehman, M. Shoaib, I. Siddiqui, F. Ahmed, M.R. Tanveer, and S.U. Jilani, “Effect of Wind Shear Coefficient for the Vertical Extrapolation of Wind Speed Data and its Impact on the Viability of Wind Energy Project”, Journal of Basic & Applied Sciences 11, 90‒100 (2005).
  • [34] L. Chapman, D.S. Hammond, and J.E. Thornes, “Roughness length estimation along road transects using airborne LIDAR data”, Meteorological Applications 19, 420–426 (2012).
  • [35] J. Wieringa, “Updating the Davenport roughness classification”, Journal of Wind Engineering and Industrial Aerodynamics 41, 357‒358 (1992).
  • [36] M.L. Ray, A.L. Rogers, and J.G. McGowan, “Analysis of wind shear models and trends in different terrain”, In: Proceedings of American Wind Energy Association Windpower, Pittsburgh, PA, USA; June 2006 (2006).
  • [37] C. Carrillo, J. Cidrás, E. Díaz-Dorado, and A.F. Obando-Montaño, “An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)”, Energies 7, 1‒25 (2014).
  • [38] R. Gupta and A. Biswas, “Wind data analysis of Silchar (Assam, India) by Rayleigh’s andWeibull methods”, Journal of Mechanical Engineering Research 2, 010‒024 (2010).
  • [39] P. Bhattacharya and R. Bhattacharjee, “A study on Weibull distribution for estimating the parameters”, Journal of Applied Quantative Methods 5, 234 – 241 (2010).
  • [40] A. Parajuli, “A Statistical Analysis of Wind Speed and Power Density Based on Weibull and Rayleigh Models of Jumla, Nepal”, Energy and Power Engineering 8, 271‒282, (2016).
  • [41] D.L. Elliott, C.G. Holladay, W.R. Barchet, H.P. Foote, and W.F. Sandusky, “Wind Energy Resource Atlas of the United States, Wind power classes”, (1986) http://rredc.nrel.gov/wind/pubs/atlas/tables/1‒1T.html. [Access date: 9 February 2018].
  • [42] U.B. Gunturu and C.A. Schlosser, “Characterization of wind power resource in the United States”, Atmos. Chem. Phys. 12, 9687–9702 (2012).
  • [43] A. Cramb, “Dagenham ’worst location for a wind turbine’”, The Telegraph, 9 July 2009, http://www.telegraph.co.uk/news/earth/earthnews/5787111/ Dagenham-worst-location-for-a-wind-turbine.html. [Access date: 9 February 2018].
  • [44] “Europe’s onshore and offshore wind energy potential. An assessment of environmental and economic constraints”, European Environment Agency Technical Report (2009), 6, https://www.eea.europa.eu/publications/europes-onshoreand- offshore-wind-energy-potential. [Access date: 9 February 2018].
  • [45] M. Michalak, “Wind energy resource assessment for the needs of small wind energy” (in Polish). AGH electrical and electronic engineering 28, 14‒19 (2009).
  • [46] A. Ostrowska-Bućko, “Wind energy utilisation based on small vertical axis wind turbines” (in Polish), Civil and Environmental Engineering 5, 65‒72 (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fc8592b-4cb9-4620-a8ae-b4a6637b2960
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.