PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odporność profili budowlanych z kompozytów polimerowych zbrojonych łuskami zbóż na grzyby domowe

Identyfikatory
Warianty tytułu
EN
Resistance of construction profiles made of polymer composites reinforced with cereal husks to the fungi
Języki publikacji
PL
Abstrakty
PL
Analizowano odporność profili z kompozytów PVC z napełniaczem z pulweryzowanych łusek owsa, prosa i ryżu na działanie na grzybów domowych. Wyroby z łuskami owsa i ryżu wykazały porównywalną podatność na działanie Coniophora puteana, Gloeophyllum trabeum oraz Coriolus versicolor, ale mniejszą niż kompozyt z łuskami prosa. Coniophora puteana wykazał największy stopień rozwoju grzybni i zmienił morfologię powierzchni profili. Ekspozycja na działanie grzybów w środowisku mokrym skutkowała zmniejszeniem wytrzymałości na zginanie i modułu sprężystości, największym w przypadku kompozytu zbrojonego łuskami prosa. Kluczowy był wpływ samego środowiska mokrego. Mikroorganizmy nieznaczenie zmieniły właściwości przy zginaniu.
EN
The resistance to fungi of oat, millet and rice husks reinforced PVC composite profiles was analysed. Products with oat and rice husks showed comparable susceptibility to Coniophora puteana, Gloeophyllum trabeum and Coriolus versicolor, lower than the composite with millet husks. Coniophora puteana showed the highest degree of mycelium growth, changing the morphology of the profile surface. Exposure to fungi in a wet condition caused a decrease in flexural strength and modulus of elasticity, the greatest in the case of millet husks reinforced composite. The influence of the wet conditions itself was crucial. The microorganisms slightly changed the bending properties.
Rocznik
Tom
Strony
70--75
Opis fizyczny
Bibliogr. 32 poz., il.
Twórcy
autor
  • Instytut Techniki Budowlanej, Zakład Inżynierii Materiałów Budowlanych
  • Instytut Techniki Budowlanej, Zakład Inżynierii Materiałów Budowlanych
autor
  • Instytut Techniki Budowlanej, Zakład Inżynierii Materiałów Budowlanych
Bibliografia
  • [1] Gurunathan T., Mohanty S., Nayak S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A Appl. Sci. Manuf. 2015. doi.org/10.1016/j.compositesa.2015.06.007.
  • [2] Maraveas C. Production of Sustainable Construction Materials Using Agro-Wastes. Materials. 2020. doi.org/10.3390/ma13020262.
  • [3] Azman M.A., Asyraf M.R.M., Khalina A., Petrů M., Ruzaidi C.M., Sapuan S.M., Wan Nik W.B., Ishak M.R., Ilyas R.A., Suriani M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers. 2021. doi.org/10.3390/polym13121917.
  • [4] Väisänen T., Das O., Tomppo L.A. Review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017. DOI. org/10.1016/j.jclepro.2017.02.132.
  • [5] Czarnecki L., Van Gemert D. Innovation in construction materials engineering versus sustainable development. Bull. Polish Acad. Sci. Tech. Sci. 2017; 65: 765 - 771.
  • [6] Regulation (EU) No 305/2011 of the European Parliament and of the Council.
  • [7] Schirp A., Wolcott M.P. Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites. Wood Fiber Sci. 2005; 37: 643 - 652.
  • [8] Morris P.I., Cooper P. Recycled plastic/wood composite lumber attacked by fungi. For. Prod. J. 1998; 48: 86 - 88.
  • [9] Kirk P.M., Cannon P.F., Minter D.W., Stalpers J.A. Dictionary of the Fungi (10thedn). Wallingford, UK. 2008.
  • [10] Gautam R., Bassi A.S., Yanful E.K. A review of biodegradation of synthetic plastic and foams. Appl. Biochem. Biotechnol. 2007. https://doi.org/10.1007/s12010-007-9212-6.
  • [11] Leja K., Lewandowicz G. Polymer biodegradation and biodegradable polymers - A review. Pol. J. Environ. Stud. 2010; 19: 255 - 266.
  • [12] Yap S.Y., Sreekantan S., Hassan M., Sudesh K., Ong M.T. Characterization and Biodegradability of Rice Husk-Filled Polymer Composites. Polymers 2021. doi.org/10.3390/polym13010104.
  • [13] Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers. 201. doi.org/10.3390/polym11101667.
  • [14] Fabiyi J.S., McDonald A.G., Morrell J.J., Freitag C. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A: Applied Science and Manufacturing. 2011. doi.org/10.1016/j.compositesa.2011.01.009.
  • [15] Catto A.L., Rosseto E.S., Reck M.A., Rossini K., da Silveira R.M.B., Santana R.M.C. Growth of white rot fungi in composites produced from urban plastic waste and wood. In Macromolecular Symposia 2014. https://doi.org/10.1002/masy.201300216.
  • [16] Camarero S., Martínez M.J., Martínez A.T. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels, Bioproducts and Biorefining. 2014. https://doi.org/10.1002/bbb.1467.
  • [17] Catto A.L., Montagna L.S., Almeida S.H., Silveira R.M., Santana R.M. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration and Biodegradation 2016. https://doi.org/10.1016/j.ibiod.2015.12.026.
  • [18] Mankowski M., Morrell J.J. Patterns of fungal attack inwood-plastic composites following exposure in a soil block test. Wood and Fiber Science. 2000. https://ir.library.oregonstate.edu/concern/articles/fn106z43g.
  • [19] Naumann A., Seefeldt H., Stephan I., Braun U., Noll M. Material resistance of flame retarded wood-plastic composites against fire and fungal decay. Polym. Degrad. Stab. 2012. https://doi.org/10.1016/j.polymdegradstab.2012.03.031
  • [20] Ashori A., Behzad H.M., Tarmian A. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Composites. 2013. https://doi.org/10.1016/j.compositesb.2012.11.022
  • [21] Friedrich D., Luible A. Standard-compliant development of a design value for wood-plastic composite cladding: An application-oriented perspective. Case Stud. Struct. Eng. 2016, 5, 13-17. doi.org/10.1016/j.csse.2016.01.001.
  • [22] Vercher J., Fombuena V., Diaz A., Soriano M. Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications. J. Thermoplast. Compos. Mater. 2020, 33, 477 - 500. Doi.org/10.1177/0892705718807956.
  • [23] Pratheep V., Priyanka E., Hare Prasad P. Characterization and Analysis of Natural Fibre-Rice Husk with Wood Plastic Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012066.
  • [24] EN 84. Wood Preservatives. Accererated Ageing of Treted Wood Prior to Biological Testing. Leaching Procedurę; European Committee for Standardization (CEN): Brussels, Belgium, 1997.
  • [25] ENV 12038. Durability of Wood and Wood-Based Products. Wood-Based Panels. Method of Test for Determining the Resistance against Wood-Destroying Basidiomycetes; European Committee for Standardization (CEN): Brussels, Belgium, 2002.
  • [26] EN ISO 178. Plastics. Determination of Flexural Properties; European Committee for Standardization (CEN): Brussels, Belgium, 2019.
  • [27] EN 15534-1; Composites Made from Cellulose-Based Materials and Thermoplastics (Usually Called Wood-Polymer Composites (WPC) or Natural Fibre Composites (NFC)). Part 1: Test Methods for Characterisation of Compounds and Products. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
  • [28] Wiejak A., Francke B. Testing and Assessing Method for the Resistance of Wood-Plastic Composites to the Action of Destroying Fungi. Materials. 2021. doi.org/10.3390/ma14030697.
  • [29] Sudoł E., Kozikowska E., Choińska E. The Utility of Recycled Rice Husk-Reinforced PVC Composite Profiles for Façade Cladding. Materials. 2022. doi.org/10.3390/ma15103418.
  • [30] Ibach R., Gnatowski M., Sun G., Glaeser J., Leung M., Haight J. Laboratory and environmental decay of wood - plastic composite boards: Flexural properties. Wood Mater. Sci. Eng. 2018; 13: 81 - 96.
  • [31] Prasad A., Rao K. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011. doi.org/10.1016/j.matdes.2011.03.015.
  • [32] Wasiak M. Wpływ czynników środowiskowych na użyteczność budowlaną wyrobów z kompozytów włókno-polimerowych (NFPCs), Instytut Techniki Budowlanej, Sprawozdanie roczne nr NZM-058/2021 zad. 1 (opracowanie niepublikowane).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fc8391e-f63a-4171-984e-5173d34fce27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.