PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration of backward-in-time model using drifting buoys in the East China Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the process of oil exploitation and transportation, large amounts of crude oil are often spilled, resulting in serious pollution of the marine environment. Forecasting oil spill reverse trajectories to determine the exact oil spill sources is crucial for taking proactive and effective emergency measures. In this study, the backward-in-time model (BTM) is proposed for identifying sources of oil spills in the East China Sea. The wind, current and random walk are three major factors in the simulation of oil spill sources. The wind drag coefficient varies along with the uncertainty of the wind field, and the random walk is sensitive to various traits of different regions, these factors are taken as constants in most of the state-of-the-art studies. In this paper, a self-adaptive modification mechanism for drift factors is proposed, which depends on a data set derived from the drifter buoys deployed over the East China Sea shelf. It can be well adapted to the regional characteristics of different sea areas. The correlation factor between predicted positions and actual locations of the drifters is used to estimate optimal coefficients of the BTM. A comparison between the BTM and the traditional method is also made in this study. The results presented in this paper indicate that our method can be used to predict the actual specific spillage locations.
Czasopismo
Rocznik
Strony
238--247
Opis fizyczny
Bibliogr. 34 poz., mapy, tab., wykr.
Twórcy
autor
  • College of Information Science and Engineering, Ocean University of China, Qingdao, PR China
  • Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
autor
  • College of Information Science and Engineering, Ocean University of China, Qingdao, PR China
autor
  • College of Liberal Arts, Journalism and Communication, Ocean University of China, Qingdao, PR China
  • Research Institute of Marine Development of China, Shandong Qingdao, PR China
autor
  • College of Information Science and Engineering, Ocean University of China, Qingdao, PR China
autor
  • College of Information Science and Engineering, Ocean University of China, Qingdao, PR China
  • Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
Bibliografia
  • [1] Abascal, A. J., Castanedo, S., Mendez, F. J., Medina, R., Losada, I. J., 2009. Calibration of a Lagrangian transport model using drifting buoys deployed during the Prestige oil spill. J. Coast. Res. 25 (1), 80-90, http://dx.doi.org/10.2112/07-0849.1.
  • [2] Adlandsvik, B., Gundersen, A. C., Nedreaas, K. H., Stene, A., Albert, O. T., 2004. Modelling the advection and diffusion of eggs and larvae of Greenland halibut (Reinhardtius hippoglossoides) in the north-east Arctic. Fish. Oceanogr. 13 (6), 403-415, http://dx.doi.org/10.1111/j.1365-2419.2004.00303.x.
  • [3] AL-Rabeh, A. H., Lardner, R. W., Gunay, N., 2000. Gulfspill Version 2.0: a software package for oil spills in the Arabian Gulf. Environ. Modell. Softw. 15 (4), 425—442, http://dx.doi.org/10.1016/S1364-8152(00)00013-X.
  • [4] Alves, T. M., Kokinou, E., Zodiatis, G., 2014. A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins. Mar. Pollut. Bull. 8 (1), 443-457, http://dx.doi.org/10.1016/j.mar-polbul.2014.06.034.
  • [5] Alves, T. M., Kokinou, E., Zodiatis, G., Lardner, R., Panagiotakis, C., Radhakrishnan, H., 2015. Modelling of oil spills in confined maritime basins: the case for early response in the Eastern Mediterranean Sea. Environ. Pollut. 206 (2015), 390—399, http://dx.doi.org/10.1016/j.envpol.2015.07.042.
  • [6] Alves, T. M., Kokinou, E., Zodiatis, G., Radhakrishnan, H., Panagiotakis, C., Lardner, R., 2016. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Sci. Rep. UK 6, 36882, http://dx.doi.org/10.1038/srep36882.
  • [7] Andres, M., Park, J.-H., Wimbush, M., Zhu, X.-H., Chang, K.-I., Ichikawa, H., 2008. Study of the Kuroshio/Ryukyu current system based on satellite-altimeter and in situ measurements. J. Oceanogr. 64 (6), 937-950, http://dx.doi.org/10.1007/s10872-008-0077-2.
  • [8] ASCE (American Society of Civil Engineers), 1996. State-of-the-art. review of modeling transport and fate of oil spills. ASCE Committee on Modeling Oil Spills, Water Resources Engineering Division. J. Hydraul. Eng.-ASCE 122, 594-609.
  • [9] Batchelder, H. P., 2006. Forward-in-time-/backward-in-time-trajectory (FITT/BITT) modeling of particles and organisms in the coastal ocean. J. Atmos. Ocean. Technol. 23 (5), 727-741, http://dx.doi.org/10.1175/JTECH1874.1.
  • [10] Breivik, Ø., Allen, A. A., 2008. An operational search and rescue model for the Norwegian Sea and the North Sea. J. Mar. Syst. 69 (1-2), 99-113, http://dx.doi.org/10.1016/j.jmarsys.2007.02.010.
  • [11] Breivik, Ø., Allen, A. A., Maisondieu, C., Roth, J. C., 2011. Windinduced drift of objects at sea: the leeway field method. Appl. Ocean Res. 33 (2), 100-109, http://dx.doi.org/10.1016/j.apor.2011.01.005.
  • [12] Canu, D. M., Solidoro, C., Bandelj, V., Quattrocchi, G., Sorgente, R., Olita, A., Fazioli, L., Cucco, A., 2015. Assessment of oil slick hazard and risk at vulnerable coastal sites. Mar. Pollut. Bull. 94 (1), 84-95, http://dx.doi.org/10.1016/j.marpol-bul.2015.03.006.
  • [13] Ciappa, A., Costabile, S., 2014. Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea). Mar. Pollut. Bull. 84 (1-2), 44-55, http://dx.doi.org/10.1016/j.marpolbul.2014.05.044.
  • [14] Cho, K. H., Li, Y., Wang, H., Park, K. S., Choi, J. Y., Shin, K. I., Kwon, J. I., 2014. Development and validation of an operational search and rescue modeling system for the Yellow Sea and the East and South China Seas. J. Atmos. Ocean. Technol. 31 (1), 197-215, http://dx.doi.org/10.1175/JTECH-D-13-00097.1.
  • [15] El-Fadel, M., Abdallah, R., Rachid, G., 2012. A modeling approach toward oil spill management along the Eastern Mediterranean. J. Environ. Manage. 113, 93-102, http://dx.doi.org/10.1016/j.jenvman.2012.07.035.
  • [16] Galt, J. A., Payton, D. L., 1983. The use of receptor mode trajectory analysis techniques for contingency planning. Int. Oil Spill Conf. Proc. 1983 (1), 307-311, http://dx.doi.org/10.7901/2169-3358-1983-1-307.
  • [17] Guo, X., Miyazawa, Y., Yamagata, T., 2006. The Kuroshio onshore intrusion along the shelf break of the East China Sea: the origin of the Tsushima Warm Current. J. Phys. Oceanogr. 36 (12), 2205-2231, http://dx.doi.org/10.1175/JPO2976.1.
  • [18] Heath, M., Zenitani, H., Watanabe, Y., Kimura, R., Ishida, M., 1998. Modelling the dispersal of larval Japanese sardine, Sardinops melanostictus, by the Kuroshio Current in 1993 and 1994. Fish. Oceanogr. 7 (3-4), 335-346, http://dx.doi.org/10.1046/j.1365-2419.1998.00076.x.
  • [19] Ichikawa, K., Tokeshi, R., Kashima, M., Sato, K., Matsuoka, T., Kojima, S., Fujii, S., 2008. Kuroshio variations in the upstream region as seen by HF radar and satellite altimetry data. Int. J. Remote Sens. 29 (21), 6417-6426, http://dx.doi.org/10.1080/01431160802175454.
  • [20] Isobe, A., Kako, S., Chang, P., Matsuno, T., 2009. Two-way particletracking model for specifying sources of drifting objects: application to the East China Sea Shelf. J. Atmos. Ocean. Technol. 26 (8), 1672-1682, http://dx.doi.org/10.1175/2009JTECHO643.1.
  • [21] Lee, D.-Y., Park, K.-W., Shi, J., 2009. Establishment of an operational oceanographic system for regional seas around Korea. Ocean. Polar Res. 31 (4), 359-368, http://dx.doi.org/10.4217/OPR.2009.31.4.361 (in Korean).
  • [22] Lee, T. N., Johns, W. E., Liu, C.-T., Zhang, D., Zantopp, R., Yang, Y., 2001. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current. J. Geophys. Res. 106 (10), 22143-22158, http://dx.doi.org/10.1029/2000JC000535.
  • [23] Liu, P., Li, X., Qu, J. J., Wang, W., Zhao, C., Pichel, W., 2011. Oil spill detection with fully polarimetric UAVSAR data. Mar. Pollut. Bull. 62 (12), 2611-2618, http://dx.doi.org/10.1016/j.marpol-bul.2011.09.036.
  • [24] Miller, C. B., Lynch, D. R., Carlotti, F., Gentleman, W., Lewis, C., 1998. Coupling of an individual-based population dynamic model of Calanus finmarchicus to a circulation model for the Georges Bank region. Fish. Oceanogr. 7 (3-4), 219-234, http://dx.doi.org/10.1046/j.1365-2419.1998.00072.x.
  • [25] Minguez, R., Abascal, A. J., Castanedo, S., Medina, R., 2012. Stochastic Lagrangian trajectory model for drifting objects in the ocean. Stoch. Environ. Res. Risk A 26 (8), 1081-1093, http://dx.doi.org/10.1007/s00477-011-0548-7.
  • [26] Ni, Z., Qiu, Z., Su, T. C., 2010. On predicting boat drift for search and rescue. Ocean Eng. 37 (13), 1169-1179, http://dx.doi.org/10.1016/j.oceaneng.2010.05.009.
  • [27] Park, K. S., Lee, J. C., Jun, K. C., Kim, S. I., Kwon, J. I., 2009. Development of an operational storm surge prediction system for the Korean coast. Ocean Polar Res. Ocean Polar Res. 31 (4), 369-377, (in Korean).
  • [28] Prants, S. V., 2015. Backward-in-time methods to simulate large-scale transport and mixing in the ocean. Phys. Scr. 90 (7), 4054-4066, http://dx.doi.org/10.1088/0031-8949/90/7/074054.
  • [29] Price, J. M., Reed, M., Howard, M. K., Johnson, W. R., Ji, Z., Marshall, C. F., Guinasso Jr., N. L., Rainey, G. B., 2006. Preliminary assessment of an oil-spill trajectory model using a satellite-tracked, oilspill-simulating drifters. Environ. Modell. Softw. 21 (2), 258-270, http://dx.doi.org/10.1016/j.envsoft.2004.04.025.
  • [30] Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., Ma, J., 2004. Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophys. Res. Lett. 31 (11), 303-306, http://dx.doi.org/10.1029/2004GL019824.
  • [31] Takahashi, D., Morimoto, A., 2013. Mean field and annual variation of Surface flow in the East China Sea as revealed by combining satellite altimeter and drifter data. Prog. Oceanogr. 111, 125-139, http://dx.doi.org/10.1016/j.pocean.2013.01.007.
  • [32] Torgrimson, G. M., 1981. A comprehensive model for oil spill simulation. Int. Oil Spill Conf. Proc. 1981 (1), 423-428, http://dx.doi.org/10.7901/2169-3358-1981-1-423.
  • [33] Ullman, D. S., O'Donnell, J., Kohut, J., Fake, T., Allen, A., 2006. Trajectory prediction using HF radar surface currents: MonteCarlo simulations of prediction uncertainties. J. Geophys. Res. Oceans 111 (C12), 14 pp., http://dx.doi.org/10.1029/2006JC003715.
  • [34] Yu, F. J., Yao, F. X., Yang, Z., Wang, G. S., Chen, G., 2016. i4OilSpill, an operational marine oil spill forecasting model for Bohai Sea. J. Ocean Univ. China 15 (5), 799-808, http://dx.doi.org/10.1007/s11802-016-3025-6.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fc5392c-d0d1-49f5-aa33-c84fffe829b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.