Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the presented work is to determine (i) mechanical properties of the ascending aorta wall (DAA) and the wall of the ascending aortic aneurysm (DAAA), in which spontaneous dissection resulting from the evolving disease occurred, and (ii) the strength of the interface between the layers in the above-mentioned vessels. Methods: The mechanical tests were divided into two steps. In the first step the mechanical properties of the of DAA and DAAA walls were examined on the basis of uniaxial stretching until rapture. In the next step the mechanical parameters of the interface between layers of DAA and DAAA walls were determined by the peeling test. Results: Higher values of tensile strength (max) and Young’s modulus (E) were obtained for the DAAA group, to which the dissecting wall of the ascending aortic aneurysm was classified. For circumferential samples, the difference between the DAAA and DAA groups was 39% in the case of tensile strength and 70% in the case of the Young’s modulus. Conclusions: Summarizing, the studies performed showed that the dissection process is different in the case of the ascending aortic aneurysm wall and the ascending aorta wall. The wall of the ascending aortic aneurysm is more susceptible to dissection, as evidenced by lower values of the mechanical parameters of the interface between the intima and the media-adventitia complex. The obtained results of mechanical properties tests confirm that dissection and aneurysm should be treated as separate disease entities that may coexist with each other.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
127--134
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanism, Wrocław, Poland
autor
- Wrocław Medical University, the Clinic of Cardiac Surgery, Wrocław, Poland
autor
- Wrocław Medical University, the Clinic of Cardiac Surgery, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanism, Wrocław, Poland
Bibliografia
- [1] AVANZINI A., BATTINI D., BAGOZZI L., BISLERI G., Biomechanical Evaluation of Ascending Aortic Aneurysm, Hindawi Publishing Corporation BioMed Research International, 2014, 1, 9.
- [2] AKYILDIZ A.C., SPEELMAN L., GIJSEN F.J.H., Mechanical properties of human atherosclerotic intima tissue, The American Journal of Biomechanics, 2014, 47, 773–783.
- [3] BORGES F., JALDIN R.G., DIAS R.R., Collagen is reduced and disrupted in human aneurysm and dissections of ascending aorta, Human Pathology, 2008, 39, 437.
- [4] CARUSO M.U., SERRAA R., PERRI P., BUFFONE G., CALIO F.G., FRANCISCIS S., FRAGOMENI G., A computional evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence, Acta of Bioengineering and Biomechanics, 2017, 19 (3), p. 43–52.
- [5] EUGSTER T., HUBER A., OBEID T., SCHWEGLER I., GÜRKE L., STIERLI P., Aminoterminal propeptide of type III procollagen and matrix metalloproteinases-2 and -9 failed to serve as serum markers for abdominal aortic aneurysm, European Journal of Vascular and Endovascular Surgery, 2005, 29 (4), 378–382.
- [6] FERRARA A., PANDOLFI A., A numerical study of arterial media dissection processes, International Journal of Fracture, 2010, 166 (1–2), p. 21–33.
- [7] HANUZA J., MACZKA M., GASIOR-GLOGOWSKA M., KOMOROWSKA M., KOBIELARZ M., BEDZINSKI R., SZOTEK S., MAKSYMOWICZ K., HERMANOWICZ K., FT-Raman spectroscopic study of thoracic aortic wall subjected to uniaxial stress, J. Raman Spectrosc., 2010, 41 (10), 1163–1169.
- [8] KOT M., KOBIELARZ M., MAKSYMOWICZ K., Assessment of mechanical properties of arterial calcium deposition, T. Famena, 2011, 35(3), 49–56.
- [9] KOZUŃ M., Dissection properties of the human thoracic arterial wall with early stages of atherosclerosis lesions, Journal of Theoretical and Applied Mechanics, 2016, 54 (1), 229–238.
- [10] KOZUŃ M., KOBIELARZ M., CHWIŁKOWSKA A., PEZOWICZ C., The impact of development of atherosclerosis on dissection resistance of the thoracic aortic wall, Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 292–300.
- [11] KUZAN A., CHWILKOWSKA A., PEZOWICZ C., WITKIEWICZ W., GAMIAN A., MAKSYMOWICZ K., KOBIELARZ M., The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci, Cardiovasc. Pathol., 2017, 28, 21–27.
- [12] LÓPEZ-CANDALES A., HOLMES D.R., LIAO S., SCOTT M.J., WICKLINE S.A., THOMPSON R.W., Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms, American Journal of Pathology, 1997, 150 (2), 993–1007.
- [13] MCGEE G.S., BAXTER B.T., SHIVELY V.P., CHISHOLM R., MCCARTHY W.J., FLINN W.R., YAO J.S., PEARCE W.H., Aneurysm or occlusive disease – factors determining the clinical course of atherosclerosis of the infrarenal aorta, Surgery, 1991, 110 (2), 370–375.
- [14] PASTA S., PHILLIPPI J.A., GLEASON T.G., VORP D.A., Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta, The Journal of Thoracic and Cardiovascular Surgery, 2012, 460–467,
- [15] ROCCABIANCA S.R., ATESHIAN G.A., HUMPHREY J.D., Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection, Biomechanics and Modeling in Mechanobiology, 2014, 13 (1), 13–25.
- [16] SAKALIHASAN N., LIMET R., DEFAWE O.D., Abdominal aortic aneurysm, Lancet, 2005, 365 (9470), 1577–1589.
- [17] SARIOLA H., VILJANEN T., LUOSTO R., Histological pattern and changes in extracellular matrix in aortic dissection, Journal of Clinical Pathology, 1986, 39, 1074.
- [18] SOKOLIS D.P., KEFALOYANNIS E.M., KOULOUKOUSSA M., MARINOS E., BOUDOULAS H., KARAYANNACOS P.E., A structural basis for the aortic stress–strain relation in uniaxial tension, Journal of Biomechanics, 2006, 39, 1651–1662.
- [19] SOMMER G., GASSER T.C., REGITNIG P., AUER M., HOLZAPFEL G.A., Dissection properties of the human aortic media: an experimental study, Journal of Biomechanical Engineering, 2008, 130 (2), 1–12.
- [20] TONG J., SOMMER G., REGITNIG P., HOLZAPFEL G.A., Dissection properties and mechanical strength of tissue components in human carotid bifurcation, Annals of Biomedical Engineering, 2011, 39 (6), 1703–1719.
- [21] TSAMIS A., KRAWIEC J.T., VORP D.A., Elastin and collagen fibre microstructure of the human aorta in ageing and disease: review, Journal of the Royal Society, 2017, dx.doi.org/10.1098/rsif.2012.1004.
- [22] WATON P., HILL N., HEIL M., A mathematical model for the growth of the abdominal aortic aneurysm, Biomechanics and Modeling in Mechanobiology, 2004, 3, 98–113.
- [23] WANG Y., JOHNSON J., SPINALE F., SUTTON M., LESSNER S., Quantitative measurement of dissection resistance in intimal and medial layers of human coronary arteries, Experimental Mechanics, 2014, 54 (4), 677–683.
- [24] WANG Y., ROGER S.M., HILL N.A., LUO X., Propagation of dissection in a residually stressed artery model, Biomechanics and Modeling in Mechanobiology, 2017, 16, 139–149.
- [25] WU D., SHEN Y.H., RUSSEL L., COSELLI J.S., LEMAIRE S.A., Molecular mechanisms of thoracic aortic dissection, Journal of Surgical Research, 2013, 907–924.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fc4797b-6b32-4480-a1e6-015a63defd23