PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Path regularity of Gaussian processes via small deviations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the a.s. sample path regularity of Gaussian processes. To this end we relate the path regularity directly to the theory of small deviations. In particular, we show that if the process is n-times differentiable, then the exponential rate of decay of its small deviations is at most ε-1/n. We also show a similar result if n is not an integer. Further generalizations are given, which parallel the entropy method to determine the small deviations. In particular, the present approach seems to be a probabilistic interpretation of the multiplicativity property of the entropy numbers.
Rocznik
Strony
61--78
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Technische Universität Berlin, Sekr. MA7-5, Straße des 17. Juni 136, 10623 Berlin, Germany
Bibliografia
  • [1] F. Aurzada, Small deviations for stable processes via compactness properties of the parameter set, Statist. Probab. Lett. 78 (6) (2008), pp. 577-581.
  • [2] F. Aurzada, I. A. Ibragimov, M. Lifshits and H. van Zanten, Small deviations of smooth stationary Gaussian processes (in Russian), Teor. Veroyatnost. i Primenen. 53 (2008), pp. 788-798; English translation: Theory Probab. Appl. 53 (2009), pp. 697-707.
  • [3] F. Aurzada and T. Simon, Small ball probabilities for stable convolutions, ESAIM Probab. Stat. 11 (electronic) (2007), pp. 327-343.
  • [4] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl., Vol. 27, Cambridge University Press, Cambridge 1989.
  • [5] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Math., Vol. 98, Cambridge University Press, Cambridge 1990.
  • [6] X. Chen and W. V. Li, Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Ann. Probab. 31 (2) (2003), pp. 1052-1077.
  • [7] S. Dereich, The coding complexity of diffusion processes under supremum norm distortion, Stochastic Process. Appl. 118 (6) (2008), pp. 917-937.
  • [8] S. Dereich, F. Fehringer, A. Matoussi and M. Scheutzow, On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces, J. Theoret. Probab. 16 (1) (2003), pp. 249-265.
  • [9] S. Dereich and C. Vormoor, The high resolution vector quantization problem with Orlicz norm distortion, J. Theoret. Probab. (to appear).
  • [10] J. A. Fill and F. Torcaso, Asymptotic analysis via Mellin transforms for small deviations in L2-norm of integrated Brownian sheets, Probab. Theory Related Fields 130 (2) (2004), pp. 259-288.
  • [11] F. Gao, Entropy estimate for k-monotone functions via small ball probability of integrated Brownian motion, Electron. Comm. Probab. 13 (2008), pp. 121-130.
  • [12] F. Gao, J. Hannig, T.-Y. Lee and F. Torcaso, Laplace transforms via Hadamard factorization, Electron. J. Probab. 8 (13) (2003), 20 pp. (electronic).
  • [13] F. Gao, J. Hannig and F. Torcaso, Integrated Brownian motions and exact L2-small balls, Ann. Probab. 31 (3) (2003), pp. 1320-1337.
  • [14] S. Graf, H. Luschgy and G. Pagès, Functional quantization and small ball probabilities for Gaussian processes, J. Theoret. Probab. 16 (4) (2003), pp. 1047-1062.
  • [15] D. Khoshnevisan and Zh. Shi, Chung’s law for integrated Brownian motion, Trans. Amer. Math. Soc. 350 (10) (1998), pp. 4253-4264.
  • [16] J. Kuelbs and W. V. Li, Metric entropy and the small ball problem for Gaussian measures, J. Funct. Anal. 116 (1) (1993), pp. 133-157.
  • [17] S. Kwapień, M. B. Marcus and J. Rosiński, Two results on continuity and boundedness of stochastic convolutions, Ann. Inst. H. Poincaré Probab. Statist. 42 (5) (2006), pp. 553-566.
  • [18] W. V. Li, A Gaussian correlation inequality and its applications to small ball probabilities, Electron. Comm. Probab. 4 (1999), pp. 111-118 (electronic).
  • [19] W. V. Li and W. Linde, Existence of small ball constants for fractional Brownian motions, C. R. Acad. Sci. Paris Sér. I Math. 326 (11) (1998), pp. 1329-1334.
  • [20] W. V. Li and W. Linde, Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27 (3) (1999), pp. 1556-1578.
  • [21] W. V. Li and Qi-Man Shao, Gaussian processes: inequalities, small ball probabilities and applications, in: Stochastic Processes: Theory and Methods, Handbook of Statist. 19, North-Holland, Amsterdam 2001, pp. 533-597.
  • [22] M. Lifshits, Gaussian Random Functions, Math. Appl., Kluwer, Dordrecht 1995.
  • [23] M. Lifshits, Bibliography on small deviation probabilities, Available from: http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html, Jul. 2009.
  • [24] M. A. Lifshits and T. Simon, Small deviations for fractional stable processes, Ann. Inst. H. Poincaré Probab. Statist. 41 (4) (2005), pp. 725-752.
  • [25] H. Luschgy and G. Pagès, Functional quantization rate and mean regularity of processes with an application to Lévy processes, Ann. Appl. Probab. 18 (2) (2008), pp. 427-469.
  • [26] A. I. Nazarov, On the sharp constant in the small ball asymptotics of some Gaussian processes under L2-norm, J. Math. Sci. (N. Y.) 117 (3) (2003), pp. 4185-4210.
  • [27] A. I. Nazarov and Y. Yu. Nikitin, Exact L2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems, Probab. Theory Related Fields 129 (4) (2004), pp. 469-494.
  • [28] A. I. Nazarov and Y. Yu. Nikitin, Logarithmic asymptotics of small deviations in the L2-norm for some fractional Gaussian processes, Teor. Veroyatnost. i Primenen. 49 (4) (2004), pp. 695-711.
  • [29] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon 1993.
  • [30] G. Samorodnitsky, Lower tails of self-similar stable processes, Bernoulli 4 (1) (1998), pp. 127-142.
  • [31] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fbe9340-fd1e-4ba0-98c1-a6cce588e0b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.