PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of selected properties of cements modified with glassy carbon and cancellous bone

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this manuscript was to study and analyse the properties of bone cement (VertaPlex) before and after modification with glassy carbon (Alfa Aesar) and human bone (MaxGraft). Design/methodology/approach: To achieve the assumed goal, a series of samples was made - five samples for each mixture, where: 5 bone cement samples, 5 bone cement samples mixed with 20-50 μm glassy carbon in the ratio of 1 g carbon per 40 g of cement, and 5 samples of bone cement mixed with 20-50 μm glassy carbon and human bone in the ratio of 1 g of carbon per 40 g of cement and 0.4 g of bone per 40 g of cement. The produced samples (4 for each mixture, 1 was the reference sample) were subjected to tests - compression test, microscopic observations with a 3D microscope, surface profile tests and hardness tests. Findings: The study has shown that modifications with glassy carbon and bone change the mechanical properties, as well as the strength of the samples. Compression tests have shown that the material without admixtures is characterized by the highest compressive strength and the doping of the glassy carbon itself makes the material more brittle. A significant increase in hardness was also observed for samples with glassy carbon and bones after the pressing process. Practical implications: The study was made synthetically, without taking into account the effect of the environment of body fluids and the human body temperature. This study is an introduction to further considerations where samples for which these conditions will be applied are currently being prepared. Originality/value: For commercial use, in treatment of patients, cements modified with glassy carbon and bone glassy carbon have not been used so far. Due to the prerequisites of a positive effect of glassy carbon addition on osseointegration and biocompatibility, the study in this area has been undertaken.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-201 Częstochowa, Poland
Bibliografia
  • [1] E. Czerwiński, B. Frańczuk, P. Borowy, Problems of osteoporotic fractures, Medycyna po Dyplomie 13 (2004) 42-49 (in Polish).
  • [2] E. Czerwiński, P. Działak, Evaluation of osteoporosis and fracture risk, Ortopedia, Traumatologia, Rehabilitacja 4/2 (2002) 127-134 (in Polish).
  • [3] J.A. Kanis, O. Johnellm, A. Oden, A. Dawson, C. De Laet, B. Jonsson, Ten year probabilites of osteoporotic fractures according to BMD and diagnostic thresholds, Osteoporosis International 12 (2001) 989-995. DOI: https://doi.org/10.1007/s001980170006
  • [4] N.B. Watts, S.T. Harris, H.K. Genant, Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty, Osteoporosis International 12 (2001) 429-437. DOI: https://doi.org/10.1007/s001980170086
  • [5] A.A. Ismail, T.W. O’Neill, C. Cooper, J.D. Finn, A.K. Bhalla, J.B. Cannata, P. Delmas, J.A. Falch, B. Felsch, K. Hoszowski, O. Johnell, J.B. Diaz-Lopez, A. Lopez Vaz, F. Marchand, H. Raspe, D.M. Reid, C. Todd, K. Weber, A. Woolf, J. Reeve, A.J. Silman and on behalf of the EPOS Study Group, Mortality associated with vertebral deformity in men and women: results from European Prospective study (EPOS), Osteoporosis International 8 (1998) 291-297. DOI: https://doi.org/10.1007/s001980050067
  • [6] P.J. Meunier, Osteoporosis: diagnosis and management, Martin Duniz, 1998.
  • [7] Z. Kotwica, A. Saracen, Vertebroplasty, Zachodnio-pomorski Szpital Specjalistyczny „MEDICAM”, Gryfice, 2009, 31-59 (in Polish).
  • [8] N. Przybyłko, D. Kocur, R. Sordyl, W. Ślusarczyk, A. Antonowicz-Olewicz, W. Kukier, M. Wojtacha, K. Suszyński, S. Kwiek, Vertebroplasty in vertebral compression fractures - literature review, Academiae Medicae Silesiensis 68/5 (2014) 375-379 (in Polish).
  • [9] L.J. Melton 3rd, E.J Atkinson, C. Cooper, W.M. O’Fallon, B.L. Riggs, Vertebral fractures predict subsequent fractures, Osteoporosis Internationale 10 (1999) 214-221. DOI: https://doi.org/10.1007/s001980050218
  • [10] C. Cooper, E.J. Atkinson, W.M. O’Fallon, L.J Melton 3rd, Incidence of clinically diagnosed vertebral fractures: a population - based study in Rochester, Minnesota, 1985-1989, Journal of Bone and Minerał Research 7/2 (1992) 221-227. DOI: https://doi.org/10.1002/jbmr.5650070214
  • [11] J. Osiełeniec, E. Czerwiński, S. Zemankiewicz, Vertebropłasty and kyphopłasty in the treatment of osteoporotic vertebrał fractures: expectations and fears, Postępy Osteoartrołogii 14/2 (2003) 1-8 (in Połish).
  • [12] P. Choryłek, Vertebropłasty and kyphopłasty - advantages and disadvantages used bone cement of PMMA, Journał of Achievements in Materiałs and Manufacturing Engineering 92/1-2 (2019) 36-49. DOI: https://doi.org/10.5604/01.3001.0013.3186
  • [13] E. Czerwiński, A. Sawiec, P. Działak, M. Kołacz, Management of osteoporosis, Ortopedia, Traumato- łogia, Rehabiłitacja 4/4 (2002) 507-515 (in Połish).
  • [14] J.D Barr, M.S. Barr, T.J. Lemłey, Percutaneus vertebropłasty for pain rełief and spinał stabiłization. Spine 25/8 (2000) 923-928. DOI: https://doi.org/10.1097/00007632-200004150-00005
  • [15] J. Chiras, C. Depriester, A. Weiłł, M.T. Soła-Martinez, H. Deramond, Vertebropłasties percutaneous. Technics and indications, Journał of Neuroradiołogy 24/1 (1997) 45-59 (in French).
  • [16] G. Baroud, M. Crookshank, M. Bohner, High-Viscosity Cement Significantły Enhances Unformity of Cement Fiłłing in Vertebropłasty: An Experimentał Modeł and Study on Cement Leakage, Spine 31/22 (2006) 2562-2568. DOI: https://doi.org/10.1097/01.brs.0000240695.58651.62
  • [17] H. Deramont, R. Darrasson, P. Gałiber, Percutenus vertebropłasty with acryłic cement in the treatment of aggressive spinał angiomas. Rachis 1 (1989) 143-153.
  • [18] H. Deramont, C. Depriester, P. Gałibert, D. Le Gars, Percutaneous vertebropłasty with połymethyłmetha- criłate. Technique, indications and resułts, Radiołogic Cłinics of North America 36/3 (1998) 533-546. DOI: https://doi.org/10.1016/S0033-8389(05)70042-7
  • [19] N. McArthur, C. Kasperk, M. Baier, M. Tanner, B. Gritzbach, O. Schoierer, W. Rothfischer, G. Krohmer, J. Hiłłmeier, H.J. Kock, P.J. Meeder, F.X. Huber, 1150 kyphopłasties over 7 years: Indications, techniques, and intraoperative compłications, Orthopedics 32/2 (2009) 90.
  • [20] S. Masała, R. Mastrangełi, M.C. Petrełła, F. Massari, A. Ursone, G. Simonetti, Percutaneous vertebropłasty in 1,253 łevełs: Resułts and łong-term effectiveness in a singłe centre, European Radiołogy 19 (2009) 165-171. DOI: https://doi.org/10.1007/s00330-008- 1133-4
  • [21] M. Weisskopf, M. Weikopf, J.A. Ohnsorge, F.U. Niethard, Intravertebrał pressure during vertebropłasty and bałłoon kyphopłasty: An in vitro study, Spine 33/2 (2008) 178-182. DOI: https://doi.org/10.1097/BRS.0b013e3181606139
  • [22] P.-L. Lai, L.-H. Chen, W.-J. Chen, I-M. Chu, Chemicał and Physicał Properties of Bone Cement for Vertebropłasty, Biomedicał Journał 36/4 (2013) 162-167. DOI: https://doi.org/10.4103/2319-4170.112750
  • [23] M. Zawadzki, J. Wałecki, K. Kordecki, I. Nasser, Interventionał radiołogy: vertebropłasty and kyphopłasty, Acta Bio-Optica et Informatica Medica 15/1 (2009) 70-72 (in Połish).
  • [24] Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone Cements for percutaneus vertebropłasty and bałłoon kyphopłasty: Current status and future devełopments, Journał of Orthopedic Transłation 3/1 (2015) 1-11. DOI: https://doi.org/10.1016/j.jot.2014.11.002
  • [25] I.H. Lieberman, D. Togawa, M.M. Kayanja, Vertebropłasty and kyphopłasty: Fiłłer materiałs, Spine Journał 5/6S (2005) S305-S316. DOI: https://doi.org/10.1016/j.spinee.2005.02.020
  • [26] A. Bałin, The effect of a głassy carbon additive to surgicał cement on its durabiłity and adaptation in the organism, Engineering of Biomateriałs 18/131 (2015) 12-31 (in Połish).
  • [27] A. John, A. Bałin, The influence of bone cement modified with głassy carbon on effort state of pełvic joint after reconstruction, Proceedings of the 16th Internationał Conference Mechanics, Kaunas, 2011, 143-148.
  • [28] A. Bałin, G. Junak, Investigation of cycłic creep of surgicał cements, Archives of Materiałs Science and Engineering 28/5 (2007) 281-284.
  • [29] A. Bałin, G. Junak, Low-cycłe fatigue of surgicał cements, Journał of Achievements in Materiałs and Manufacturing Engineering 20/1-2 (2007) 211-214.
  • [30] E. Kołczyk, A. Bałin, Appłication of the rheołogicał modeł for the assessment of the influence of głassy carbon admixture on the cycłic creep of surgicał cement, Aktuałne Probłemy Biomechaniki, Zeszyty Naukowe Katedry Mechaniki Stosowanej 3 (2009) 99-104.
  • [31] M. Wekwejt, B. Świeczko-Żurek, M. Szkodo, Requirements, modifications and test methods of bone cement - łiterature review, European Journał of Medicał Technołogies 16/3 (2017) 1-10.
  • [32] B. Świeczko-Żurek, Antimicrobał and ostheointegration activity of bone cement contains nanometałs, Journał of Achievements in Materiałs and Manufacturing Engineering 74/1 (2016) 15-21. DOI: https://doi.org/10.5604/17348412.1225753.
  • [33] J. Slane, J. Vivanco, W. Rose, H.L. Ploeg, M. Squire, Mechanical, materiał, and antimicrobial properties of acrylic bone cement impregnated with silver nano- particles, Materials Science and Engineering: C 48 (2015) 188-196. DOI: https7/doi.org/10J.1016/j.msec.201411.068
  • [34] S.C. Shen, W.K. Ng, Y.C. Dong, J. Ng, R.B.H. Tan, Nanostructured material formulated acrylic bone cements with enhanced drug release, Materials Science and Engineering: C 58 (2016) 233-241. DOI: https://doi.org/10.1016/j.msec.2015.08.011
  • [35] B. Świeczko-Żurek, The influence of biological environment on the appearance of silver coated implants, Advances in Materials Science and Engineering 12/2 (2012) 245-250. DOI: https://doi.org/10.2478/v10077-012-0007-2
  • [36] X. Banse, T.J. Sims, A.J. Bailey, Mechanical properties of adult vertebral cancellous bone: Correlation with collagen intermolecular cross-links, Journal of Bone and Mineral Research 17/9 (2002) 1621-1628. DOI: https://doi.Org/10.1359/jbmr.2002.17.9.1621
  • [37] F.J. Hou, S.M. Lang, S.J. Hoshaw, D.A. Reimann, D.P. Fyhrie, Human vertebral body apparent and hard tissue stiffness, Journal of Biomechanics 31/11 (1998) 1009¬1015. DOI: https://doi.org/10.1016/S0021-9290(98)00110-9
  • [38] E.F. Morgan, H.H. Bayraktar, T.M. Keaveny, Trabecular bone modulus-density relationships depend on anatomic site, Journal of Biomechanics 36/7 (2003) 897-904. DOI: https://doi.org/10.1016/S0021-9290(03)00071-X
  • [39] S.M. Kurtz, M.L. Villarraga, K. Zhao, A.A. Edidin, Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures, Biomaterials 26/17 (2005) 3699-3712. DOI: https://doi.org/10.1016/j.biomaterials.2004.09.055
  • [40] A.T. Trout, D.F. Kallmes, K.F. Layton, K.R. Thielen, J.G Hentz, Vertebral endplate fractures: An indicator of the abnormal forces generated in the spine after vertebroplasty, Journal of Bone and Mineral Research 21/11 (2006) 1797-1802. DOI: https://doi.org/10.1359/jbmr.060723
  • [41] H.-J. Jiang, J. Xu, Z.-Y. Qiu, X.-L. Ma, Z.-Q. Zhang, X.-X. Tan, Y. Cui, F.-Z. Cui, Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen, Materials 8 (2015) 2616-2634. DOI: https://doi.org/10.3390/ma8052616
  • [42] M. Bai, H. Yin, J. Zhao, Y. Li, Y Yang, Y Wu, Application of PMMA bone cement composited with bone-mineralized collagen in percutaneous kyphoplasty, Regenerative Biomaterials 4/4 (2017) 251-255. DOI: https://doi.org/10.1093/rb/rbx019
  • [43] Z.Y. Qiu, I.S Noh, S.M. Zhang, Silicate-doped hydroxyapatite and its promotive effect on bone mineralization, Frontiers of Materials Science 7 (2013) 40-50. DOI: https://doi.org/10.1007/s11706-013-0193- 9
  • [44] M. Tavakoli, S.S.E. Bakhtiari, S. Karbasi, Incorpo- ration of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation, International Journal of Biological Macromolecules 149 (2020) 783-793. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.300
  • [45] F. Pahlevanzadeh, H.R. Bakhsheshi-Rad, A.F. Ismail, M. Aziz, X.B. Chen, Development of PMMA-Mon- CNT bone cement with superior mechanical properties and favorable biological properties for use in bone- defect treatment, Materials Letters 240 (2019) 9-12. DOI: https://doi.org/10.1016/j.matlet.2018.12.049
  • [46] M. Wekwejt, M. Michalska-Sionkowska, M. Bartmański, M. Nadolska, K. Łukowicz, A. Pałubicka, A.M. Osyczka, A. Zieliński, Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties, Materials Science and Engineering: C 117 (2020) 111286. DOI: https://doi.org/10.1016/j .msec.2020.111286
  • [47] C. Wang, B. Yu, Y. Fan, R.W. Ormsby, H.O. McCarthy, N. Dunne, X. Li, Incorporation of multi- walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration, Ma¬terials Science and Engineering: C 103 (2019) 109823. DOI: https://doi.org/10.1016/j.msec.2019.109823
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fbaec37-9318-44f1-b1b5-e60680e37e8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.