PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of topography parameters on cellular morphology during guided cell migration on a graded micropillar Surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Guided cell migration refers to the engineering of local cell environment to specifically direct cell migration and has important applications such as utilization in cell sorting and wound healing assays. Graded micropillar surfaces have been utilized for achieving guided cell migration. Topographic parameters such as micropillar diameter and spacing gradient may have effects on the morphology of attached cells. It is critical to understand this interaction between the cells and the underlying microscale structures. Methods: In this study, a graded micropillar substrate has been fabricated to investigate the effects of the microtopography on the cell morphology in terms of the cell aspect ratio and cell circularity. Results: It is found that 1) with the increase of the micropillar diameter, the cell aspect ratio has no significance change. At the small spacing gradients, the aspect ratio is smaller than that at the large spacing gradients; 2) statistical analysis shows both the micropillar diameter and spacing gradient have no significant effect on the cell aspect ratio compared to the flat surface; 3) the cell circularity at the small micropillar diameters is higher than that at the large micropillar diameters. The cell circularity at the micropillar gradient of 0.1 µm is higher than those at the other micropillar gradients; 4) three microtopographic conditions are considered to have statistically significant effect on the cell circularity compared to the flat surface, including the micropillar diameters of 5 µm and 10 µm and the spacing gradient of 0.1 µm.
Rocznik
Strony
147--157
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, Texas, USA
autor
  • Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, Texas, USA
  • School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, China
autor
  • Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, Texas, USA
Bibliografia
  • [1] ALAPAN Y., YOUNESI M., AKKUS O., GURKAN U.A., Anisotropically stiff 3D micropillar niche induces extraordinary cell alignment and elongation, Adv. Healthc. Mater., 2016, 5, 1884–1892.
  • [2] BEUSSMAN K.M., RODRIGUEZ M.L., LEONARD A., TAPARIA N., THOMPSON C.R., SNIADECKI N.J., Micropost arrays for measuring stem cell-derived cardiomyocyte contractility, Methods, 2016, 94, 43–50.
  • [3] CROUCH A.S., MILLER D., LUEBKE K.J., HU W., Correlation of anisotropic cell behaviors with topographic aspect ratio, Biomaterials, 2009, 30, 1560–1567.
  • [4] DALBY M.J., GADEGAARD N., RIEHLE M.O., WILKINSON C.D., CURTIS A.S., Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size, Int. J. Biochem. Cell B., 2004, 36, 2005–2015.
  • [5] FANG M., GOLDSTEIN E.L., TURNER A.S., LES C.M., ORR B.G., FISHER G.J., WELCH K.B., ROTHMAN E.D., BANASZAK HOLL M.M., Type I collagen D-spacing in fibril bundles of dermis, tendon, and bone: bridging between nano-and microlevel tissue hierarchy, ACS Nano, 2012, 6, 9503–9514.
  • [6] FENG J.F., LIU J., ZHANG X.Z., ZHANG L., JIANG J.Y., NOLTA J., ZHAO M., Guided migration of neural stem cells derived from human embryonic stem cells by an electric field, Stem Cells, 2012, 30, 349–355.
  • [7] FRANTZ C., STEWART K.M., WEAVER V.M., The extracellular matrix at a glance, J. Cell Sci., 2010, 123, 41954200.
  • [8] GHIBAUDO M., SAEZ A., TRICHET L., XAYAPHOUMMINE A., BROWAE S.J., SILBERZAN P., BUGUIN A., LADOUX B., Traction forces and rigidity sensing regulate cell functions, Soft Matter, 2008, 4, 1836–1843.
  • [9] HUI J., PANG S.W., Cell migration on microposts with surface coating and confinement, Biosci. Rep., 2019, 39, BSR20181596.
  • [10] JACQUEMET G., HAMIDI H., IVASKA J., Filopodia in cell adhesion, 3D migration and cancer cell invasion, Curr. Opin. Cell Biol., 2015, 36, 23–31.
  • [11] KIM D.H., HAN K., GUPTA K., KWON K.W., SUH K.Y., LEVCHENKO A., Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients, Biomaterials, 2009, 30, 5433–5444.
  • [12] KRISHNAMOORTHY S., NOORANI B., XU C., Effects of encapsulated cells on the physical–mechanical properties and microstructure of gelatin methacrylate hydrogels, Int. J. Mol. Sci., 2019, 20, 5061.
  • [13] MANCIA A., ELLIOTT J.T., HALTER M., BHADRIRAJU K., TONA A., SPURLIN T.A., MIDDLEBROOKS B.L., BAATZ J.E., WARR G.W., PLANT A.L., Quantitative methods to characterize morphological properties of cell lines, Biotechnol. Prog., 2012, 28, 1069–1078.
  • [14] NIE F.Q., YAMADA M., KOBAYASHI J., YAMATO M., KIKUCHI A., OKANO T., On-chip cell migration assay using microfluidic channels, Biomaterials, 2007, 28, 4017–4022.
  • [15] NGUYEN A.T., SATHE S.R., YIM E.K., From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance, J. Condens. Matter Phys., 2016, 28, 183001.
  • [16] PAINTER K.J., Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis, Bull. Math. Biol., 2009, 71, 1117.
  • [17] PARK J., KIM D.H., KIM H.N., WANG C.J., KWAK M.K., HUR E., SUH K.Y., AN S.S., LEVCHENKO A., Directed migration of cancer cells guided by the graded texture of the underlying matrix, Nat. Mater., 2016, 15, 792–801.
  • [18] PARK J., KIM D.H., LEVCHENKO A., Topotaxis: a new mechanism of directed cell migration in topographic ECM gradients, Biophys. J., 2018, 114, 1257–1263.
  • [19] PETERBAUER T., HEITZ J., OLBRICH M., HERING S., Simple and versatile methods for the fabrication of arrays of live mammalian cells, Lab Chip, 2006, 6, 857–863.
  • [20] PRAGER-KHOUTORSKY M., LICHTENSTEIN A., KRISHNAN R., RAJENDRAN K., MAYO A., KAM Z., GEIGER B., BERSHADSKY A.D., Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing, Nat. Cell Biol., 2011, 13, 1457.
  • [21] RIDLEY A.J., SCHWARTZ M.A., BURRIDGE K., FIRTEL R.A., GINSBERG M.H., BORISY G., PARSONS J.T., HORWITZ A.R., Cell migration: integrating signals from front to back, Science, 2003, 302, 1704–1709.
  • [22] XU C., ZHANG Z., CHRISTENSEN K., HUANG Y., FU J., MARKWALD R.R., Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting, J. Manuf. Sci. Eng., 2014, 136, 061020.
  • [23] XU H., CASILLAS J., KRISHNAMOORTHY S., XU C., Effect of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoyphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs, Biomed. Mater., 2020, 15, 055021.
  • [24] YEUNG T., GEORGES P.C., FLANAGAN L.A., MARG B., ORTIZ M., FUNAKI M., ZAHIR N., MING W., WEAVER V., JANMEY P.A., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil. Cytoskel., 2005, 60, 24–34.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fbad2dd-df59-4b73-9806-f13c94b87286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.