Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of applying a new iterative method to linear and nonlinear fractional partial differential equations in fluid mechanics. A numerical analysis was performed to find an exact solution of the fractional wave equation and fractional Burgers’ equation, as well as an approximate solution of fractional KdV equation and fractional Boussinesq equation. Fractional derivatives of the order 𝛼 are described using Caputo's definition with 01<α≤ or 12<α≤. A comparative analysis of the results obtained using a new iterative method with those obtained by the Adomian decomposition method showed the first method to be more efficient and simple, providing accurate results in fewer computational operations. Given its flexibility and ability to solve nonlinear equations, the iterative method can be used to solve more complex linear and nonlinear fractional partial differential equations.
Rocznik
Tom
Strony
163--176
Opis fizyczny
Bibliogr. 33 poz..
Twórcy
autor
- Department of Information Technology in the Agro-Industrial Complex Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA
autor
- Department of Agricultural Construction and Real Estate Expertise, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA
autor
- Department of Integrated Water Management and Hydraulics, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA
autor
- Department of Information Technology in the Agro-Industrial Complex, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA
autor
- Department of Information Technology in the Agro-Industrial Complex, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA
Bibliografia
- [1] Singh H., Kumar D. and Baleanu D. (2019): Methods of Mathematical Modelling: Fractional Differential Equations.– Boca Raton: CRC Press.
- [2] Shishkina E. and Sitnik S. (2020): Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics.– Cambridge: Academic Press.
- [3] Milici C., Drăgănescu G. and Machado J.T. (2018): Introduction to Fractional Differential Equations.– Cham: Springer, vol.25.
- [4] Kaplan M., Bekir A., Akbulut A. and Aksoy E. (2016): The modified simple equation method for solving some fractional-order nonlinear equations.– Pramana, vol.87, No.1, pp.1-5. https://doi.org/10.1007/s12043-016-1205-y.
- [5] Brociek R., Słota D., Król M., Matula G. and Kwaśny W. (2017): Modeling of heat distribution in porous aluminum using fractional differential equation.– Fractal Fract., vol.1, No.1, pp.17. doi.org/10.3390/fractalfract1010017.
- [6] Bekir A., Aksoy E. and Cevikel A.C. (2015): Exact solutions of nonlinear time fractional partial differential equations by sub-equation method.– Math. Methods Appl. Sci., vol.38, No.13, pp.2779-2784. https://doi.org/10.1002/mma.3260.
- [7] Sonmezoglu A. (2015): Exact solutions for some fractional differential equations.– Adv. Math. Phys., vol.2015, pp.567842. https://doi.org/10.1155/2015/567842.
- [8] Gulian M., Raissi M., Perdikaris P., Karniadakis G. and Karniadakis G. (2019): Machine learning of space-fractional differential equations.– SIAM J. Sci. Comp., vol.41, No.4, pp.2485-2509. https://doi.org/10.1137/18M1204991.
- [9] Esmailzadeh E., Younesian D. and Askari H. (2018): Analytical Methods in Nonlinear Oscillations.– Amsterdam: Springer.
- [10] Arqub O.A., El-Ajou A. and Momani S. (2015): Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations.– J. Comput. Phys., vol.293, pp.385-399. https://doi.org/10.1016/j.jcp.2014.09.034.
- [11] Eltayeb H., Abdalla Y.T., Bachar I. and Khabir M.H. (2019): Fractional telegraph equation and its solution by natural transform decomposition method.– Symmetry, vol.11, No.3, pp.334. https://doi.org/10.3390/sym11030334.
- [12] El-Ajou A., Arqub O.A. and Momani S. (2015): Approximate analytical solution of the nonlinear fractional KdVBurgers equation: a new iterative algorithm.– J. Comput. Phys., vol.293, pp.81-95. https://doi.org/10.1016/j.jcp.2014.08.004.
- [13] Wang K.L., Wang K.J. and He C.H. (2019): Physical insight of local fractional calculus and its application to fractional Kdv-Burgers-Kuramoto equation.– Fractals, vol.27, No.7, pp.1950122. https://doi.org/10.1142/S0218348X19501226.
- [14] Goodrich C. and Peterson A.C. (2015): Discrete Fractional Calculus.– Berlin: Springer.
- [15] Li C. and Zeng F. (2015): Numerical Methods for Fractional Calculus.– Boca Raton: CRC Press, Vol. 24.
- [16] Sun H., Zhang Y., Baleanu D., Chen W. and Chen Y. (2018): A new collection of real world applications of fractional calculus in science and engineering.– Comm. Nonlinear Sci. Numer. Simulat., vol.64, pp.213-231. https://doi.org/10.1016/j.cnsns.2018.04.019.
- [17] Hu Z. and Du X. (2015): First order reliability method for time-variant problems using series expansions.– Struct. Multidiscip. Optim., vol.51, No.1, pp.1-21. https://doi.org/10.1007/s00158-014-1132-9.
- [18] Turkyilmazoglu M. (2019): Accelerating the convergence of Adomian decomposition method (ADM).– J. Comput. Sci., vol.31, pp.54-59. https://doi.org/10.1016/j.jocs.2018.12.014.
- [19] Jajarmi A. and Baleanu D. (2020): A new iterative method for the numerical solution of high- order non-linear fractional boundary value problems.– Front. Phys., vol.8, pp.220. https://doi.org/10.3389/fphy.2020.00220.
- [20] Bhalekar S. and Daftardar-Gejji V. (2010): Solving evolution equations using a new iterative method.– Numer. Methods Partial Differ. Equ., vol.26, No.4, pp.906-916. https://doi.org/10.1002/num.20463.
- [21] Bhalekar S. and Daftardar-Gejji V. (2008): New iterative method: application to partial differential equations.– Appl. Math. Comput., vol.203, No.2, pp.778-783. https://doi.org/10.1016/j.amc.2008.05.071.
- [22] Awawdeh F. (2010): On new iterative method for solving systems of nonlinear equations.– Numer. Algorithms, vol.54, No.3, pp.395-409. https://doi.org/10.1007/s11075-009-9342-8.
- [23] Bocanegra S.Y., Gil-González W. and Montoya O.D. (2020): A new iterative power flow method for ac distribution grids with radial and mesh topologies.– In: 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (Vol. 4). New York: IEEE. https://doi.org/10.1109/ROPEC50909.2020.9258750.
- [24] Qureshi S. and Yusuf A. (2019): Modeling chickenpox disease with fractional derivatives: From Caputo to Atangana-Baleanu.– Chaos Solitons Fractals, vol.122, pp.111-118. https://doi.org/10.1016/j.chaos.2019.03.020.
- [25] Giusti A. (2020): General fractional calculus and Prabhakar's theory.– Comm. Nonlinear Sci. Numer. Simulat., vol.83, pp.105114. https://doi.org/10.1016/j.cnsns.2019.105114.
- [26] Shen J.M., Rashid S., Noor M.A., Ashraf R. and Chu Y.M. (2020): Certain novel estimates within fractional calculus theory on time scales.– AIMS Math., vol.5, No.6, pp.6073-6086. https://doi.org/10.3934/math.2020390.
- [27] Qureshi S. and Yusuf A. (2019): Fractional derivatives applied to MSEIR problems: Comparative study with real world data.– Eur. Phys. J. Plus, vol.134, No.4, pp.171. https://doi.org/10.1140/epjp/i2019-12661-7.
- [28] Luchko Y. and Gorenflo R. (1998): The initial value problem for some fractional differential equations with the Caputo derivatives.– Preprint No. A-98-08.
- [29] Gómez-Aguilar J.F., Yépez-Martínez H., Escobar-Jiménez R.F., Astorga-Zaragoza C.M. and Reyes-Reyes J. (2016): Analytical and numerical solutions of electrical circuits described by fractional derivatives.– Appl. Math. Model., vol.40, No.21-22, pp.9079-9094. https://doi.org/10.1016/j.apm.2016.05.041.
- [30] El-Ajou A., Arqub O.A., Momani S., Baleanu D. and Alsaedi A. (2015): A novel expansion iterative method for solving linear partial differential equations of fractional order.– Appl. Math. Comput., vol.257, pp.119-133. https://doi.org/10.1016/j.amc.2014.12.121.
- [31] Rasheed M., Shihab S., Rashid T. and Enneffati M. (2021): Some step iterative method for finding roots of a nonlinear equation.– JQCM, vol.13, No.1, pp.95-102. https://doi.org/10.29304/jqcm.2021.13.1.753.
- [32] Atangana A. (2016): On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation.– Appl. Math. Comput., vol.273, pp.948-956. https://doi.org/10.1016/j.amc.2015.10.021.
- [33] Amat S., Busquier S. and Gutiérrez J.M. (2003): Geometric constructions of iterative functions to solve nonlinear equations.– J. Comput. Appl. Math., vol.157, No.1, pp.197-205. https://doi.org/10.1016/S0377-0427(03)00420-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fb55f82-6cb8-426b-bfa5-efa6c0b2a296