PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insight into a shape of salt storage caverns

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salt caverns are used for over 70 years to store power sources and dispose of industrial wastes. The design of cavern shape and dimensions is still considered as a difficult engineering problem despite progress in geotechnical, construction and exploration methods. The rational design of cavern depends on mechanical parameters of rock salt and nonsalt rocks, stability conditions, safety requirements and stored material. However, most of these factors are related to geological factors like depth of cavern location, the geological structure of salt deposit, lithology of interlayers, petrology and mineralogy of rock salt and interlayers. The significant diversity in the geological conditions of different rock salt deposits contributed to the variety in shape and dimensions of salt caverns worldwide. In this paper, the examples of caverns developed in various salt deposits are presented. The shape of these caverns and its relation to geological features is presented. The influence of geological factors on the formation of irregularities in a cavern shape is described. Moreover, the evaluation of storage caverns located in Polish salt deposits in a view of the aforementioned geological factors is performed. The information and analysis described in this paper provide input which can be useful in future plans connected with the development of underground storage in Poland.
Rocznik
Strony
363--398
Opis fizyczny
Bibliogr. 89 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Behlau J., Mingerzahn G., 2001. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology 61, 83-97.
  • [2] Berest P., Brouard B., Durup J.G., 2001. Tightness Tests in Salt-Cavern Wells. Oil & Gas Science and Technology 56, 5, 451-469.
  • [3] Bergström U., Pers K., Almén Y., 2011. International perspective on repositories for low level waste. SKB-R–11-16, Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden).
  • [4] Beutel T., Black S., 2005. Salt deposits and gas cavern storage in the UK with a case study of salt exploration in Cheshire. Oil Gas European Magazine, 1/2005, 31-35.
  • [5] BGR, 2019, https://www.bge.de/en/, assessed 15.03.2020.
  • [6] Biernat H., Wichowska A., 2011. Dodatek nr 5 do dokumentacji geologicznej złoża soli kamiennej ,,GÓRA’’ kat. rozpoznania C2+C1+B. Przedsiębiorstwo Geologiczne POLGEOL S.A., Warszawa.
  • [7] Boggs S., Boggs S. Jr., 2009. Petrology of Sedimentary Rocks. Cambridge University Press, 200 pp.
  • [8] Brańka S., Kasprzyk W., Piesiewicz T., Rybka J., Urbańczyk K., 2014. Planned K-6, K-8, K-9 caverns – project of shape, volume and storage pressure. CHEMKOP report, Cracow.
  • [9] Burliga S., 1996. Kinematics within the Klodawa salt diapir, central Poland. In: Alsop, G.I., Blundell, D.J., Davison, I. (Eds.), Salt Tectonics. Geological Society Special Publication 100. Geological Society, London, 11-21.
  • [10] Cała M., Cyran K., Kowalski M., Wilkosz P., 2018. Influence of the anhydrite interbeds on a stability of the storage caverns in the Mechelinki salt deposit (Northern Poland). Archives of Mining Sciences 63, 4, 1007-1025.
  • [11] Cartwright M.J., Ratigan J.L., 2005. Case History – Solution Mining a Cavern That Intersects a Plane of Preferred Dissolution. SMRI Fall Meeting, 2-5 October, 2005, Nancy, France, 1-16.
  • [12] Charnavel Y., Lubin N., 2002, Insoluble deposit in salt cavern-test case. In: Proceedings of SMRI Fall Meeting. BadIschl, Austria; 6-9 October 2002.
  • [13] Charnavel Y., O’Donnell J., Ryckelynck T., 2015. Solution Mining at Stublach. SMRI Spring Technical Conference 27-28 April 2015 Rochester, New York, USA.
  • [14] Cicchini O., 2004. Introduction to brine mining and underground storage of hydrocarbons in Canada. Wichita, Kansas, SMRI Spring Meeting, 1-24.
  • [15] Cyran K., 2008. Tectonics of Miocene salt series in Poland. PhD thesis, AGH University of Science and Technology, Cracow.
  • [16] Cyran K., Toboła T., Kamiński P., 2016. Wpływ cech petrologicznych na właściwości mechaniczne soli kamiennej z LGOM (Legnicko-Głogowskiego Okręgu Miedziowego). Biuletyn Państwowego Instytutu Geologicznego 466, 51-63.
  • [17] Cyran K., Toboła T., Wilkosz P., 2018. Shapes of Caverns in Different Polish Salt Deposits. SMRI Spring 2018 Technical Conference 18 June 2018, Salt Lake City, Utah, USA.
  • [18] Czapowski G., Chełmiński J., Tomaszczyk M., Tomassi-Morawiec H., 2007. Metodyka modelowania przestrzennego budowy geologicznej osadowych złóż pokładowych na przykładzie cechsztyńskiego złoża soli kamiennej Mechelinki nad Zatoką Pucką. Przegląd Geologiczny 55, 8, 681-689.
  • [19] Czapowski G., Tomassi-Morawiec H., Tadych J., Grzybowski Ł., Sztyrak T., 2009a. Bromine geochemistry and characteristics of Zechstein salt rocks in selected core materials from the Góra salt diaper near Inowrocław (Central Poland). AGH Quarterly Geology 35, 3, 287-305.
  • [20] Czapowski G., Tomassi-Morawiec H., Tadych J., Grzybowski Ł., Sztyrak T., 2009b. Characteristics and tectonics of Zechstein salt rocks of the Góra salt diapir near Inowrocław on the basis of geochemical-lithological study of selected borehole sections. Geological Review 57, 494-503.
  • [21]Duyvestyn G.M., Davidson B.C., Dusseault M.B., 1998. Salt Solution Caverns for Petroleum Industry Toxic Granular Solid Waste Disposal. Proceeding SPE/ISRM Eurorock 98, Trondheim, Norway.
  • [22] Evans D.J., Holloway S., 2009. A review of onshore UK salt deposits and their potential for underground gas storage. In: Evans D.J. & Chadwick R.A. (eds) Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe. The Geological Society, London, Special Publications 313, 39-80.
  • [23] Garlicki A., 1979. Sedymentacja soli mioceńskich w Polsce. Prace Geologiczne PAN, 1-65.
  • [24] Gent H.V., Urai J.L., de Keijzer M., 2011. The internal geometry of salt structures – A first look using 3D seismic data from the Zechstein of the Netherlands. Journal of Structural Geology 33, 3, 292-311.
  • [25] Gillhaus A., Crotogino F., Albes D., Van Sambeek L., 2006. Compilation and evaluation of bedded salt deposit and bed-ded salt cavern characteristics important to successful cavern sealing and abandonment. Solution Mining Research Institute Report, Clarks Summit, PA, USA.
  • [26] Gillhaus A., Horvath P.L., 2008. Compilation of geological and geotechnical data of worldwide domal salt deposits and domal salt cavern fields. Solution Mining Research Institute Report, Clarks Summit, PA, USA.
  • [27] Hansen F.D., Kuhlman K.L., Sobolik S., 2016. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste. Sandia National Laboratories, Albuquerque, Report SAND2016-6522R.
  • [28] Hentschel J., 1984. Erfahrungen beim Umschlag und Lagerbetrieb flüssigkeitsgefüllter Salzkavernen unter Berücksichtigung betrieblicher Messungen in der IVG Kavernenanlage Etzel. – Das Markscheidewesen 91, 368-374.
  • [29] Hofrichter E., 1968. Stratigraphy and Structure of the Palangana Salt Dome, Duval County, Texas. In: Mattox R.B., Holser W.T., Ode H., McIntire W.L., Short N.M., Taylor R.E., Van Siclen D.C. Saline Deposits: A Symposium based on Papers from the International Conference on Saline Deposits, Houston, Texas, 1962. Geological Society of America 88, 359-365.
  • [30] Horváth P.L., Mirau S., Schneider G-S., Bernhardt H., Weiler C., Bödeker J., Wippich M., Tangermann T., Ratigan J., 2018. Update of SMRI’s Compilation of Worldwide Salt Deposits and Salt Cavern Fields. Solution Mining Research Institute, April 2018.
  • [31] Jackson M.P.A., Roberts D.G., Snelson S. (Eds.), 1995. Salt Tectonics – A Global Perspective. AAPG Memoir, 65. AAPG, Tulsa, U.S.A, 454 pp.
  • [32] Jeremic M.L., 1994. Rock Mechanics in Salt Mining. CRC Press, 544 pp.
  • [33] Jie C., Dan L., Wei L., Jinyang F., Deyi J., Liang Y., Yanfei K., 2020. Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. Journal of Energy Storage 27, 101131.
  • [34] Kansas Department of Health and Environment, 2019. UHS Underground Hydrocarbon Storage, Program overview. Geology & Well Technology Unit Report.
  • [35] Król K., Kuśnierz B., 2019. Bezzbiornikowe magazynowanie substancji w górotworze – techniczne i prawne aspekty działalności organów nadzoru górniczego. AGH Drilling, Oil, Gas 36, 1, 5-18.
  • [36] Kukiałka P., 2014. Złoża soli kamiennej w prowincji Alberta, Zachodnia Kanada. Przegląd Solny 10, 132-136.
  • [37] Kukiałka P., 2015. Kawerny solne w prowincji Alberta, Zachodnia Kanada, Przegląd Solny 11, 83-90.
  • [38] Kukiałka P., 2017. Badania szczelności w kawernach solnych w Kanadzie, Przegląd Solny 13, 122-125.
  • [39] Kunstman A., Poborska-Młynarska K., Urbańczyk K., 2007. Solution mining in Salt Deposits. AGH Press, Cracow.
  • [40] Kunstman A., Poborska-Młynarska K., Urbańczyk K., 2009. Geologiczne i górnicze aspekty budowy magazynowych kawern solnych. Przegląd Geologiczny 57, 9, 819-828.
  • [41] Kupfer D.H.,1980. Problems associated with anomalous zones in Louisiana salt stocks, USA. In: A.H. Coogan and L. Hauber, eds., Fifth Symposium of Salt, Hamburg Germany, June 1978, Northern Ohio Geological Society, Cleveland 1, 119-134.
  • [42] Kupfer D.H., 1990. Anomalous Features in the Five Island Salt Stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions 40, 425-437.
  • [43] Kupfer D.H., 1998. Anomalous zones within the salt at Weeks Island, Louisiana. Trans. Gulf Coast Assoc. Soc. 48, 181-191.
  • [44] Lankof L., Polański K., Ślizowski J., Tomaszewska B., 2016. Possibility of energy storage in salt caverns. AGH Drill-ing, Oil, Gas 33, 2, 405-415.
  • [45] Lasneret J.P., Vernet D., 1978. Le stockage souterrain d ́Etrez – Aménagements de lessivage et premiers résultats. Paris, FR: Association technique del ́Industrie du Gaz en France.
  • [46] Li J.L., Shi X., Yang C., Li Y., Wang T., Ma H., Shi H., Li J., Liu J., 2017. Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. Journal of Natural Gas Science and Engineering 45, 848-859.
  • [47] Li J., Shi X., Yang C., Li Y., Wang T., Ma H., 2018. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations. Nature Scientific Reports 8, 372, 1-12.
  • [48] Looff K.M., Looff K.M., Rautman C.A., 2010a. Salt Spines, Boundary Shear Zones and Anomalous Salts: Their Charac-teristics, Detection and Influence on Salt Dome Storage Caverns. SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado.
  • [49] Looff K.M., Looff K.M., Rautman C.A., 2010b. Inferring the Geologic Significance and Potential Imapact of Salt Fabric and Anomalous Salt on the Development and Long-Term Operation of Salt Storage Caverns on Gulf Coast Salt Domes, SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado.
  • [50] Looff K.M., 2017. The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. American Gas Association Operations Conference 2-5 May 2017, Orlando, Florida.
  • [51] Lux K.H. 2009. Design of salt caverns for the storage of natural gas, crude oil and compressed air: geomechanical aspects of construction, operation and abandonment. In: Evans D.J. & Chadwick R.A. (eds) Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe. The Geological Society, London, Special Publications 313, 93-128.
  • [52] Mehti B.R., 1991. Firtst U.S. Compressed-Air Energy Storage Plant Status. SMRI Fall Technical Conference, October 27-30, Las Vegas, Nevada.
  • [53] Muehlberger W.R., 1968. Internal Structures and Mode of Uplift of Texas and Louisiana Salt Domes. In: Mattox R.B., Holser W.T., Ode H., McIntire W.L., Short N.M., Taylor R.E., Van Siclen D.C. Saline Deposits: A Symposium based on Papers from the International Conference on Saline Deposits, Houston, Texas, 1962. Geological Society of America 88, 349-359.
  • [54] Munson D.E., 2008. Bryan Mound Storage Caverns Features and the Internal Structure of the Dome. SMRI Fall Technical Conference 13-14 October 2008, Galveston, Texas.
  • [55] Nettleton L.L., 1987. Salt domes. In: Structural Geology and Tectonics. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg.
  • [56] Onal E., 2013. Stability analyses of differently shaped salt caverns for underground natural gas storage. MsC Thesis, The Pennsylvania State University, College of Earth and Mineral Sciences.
  • [57] Ozarslan A., 2012. Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy 37, 19, 14265-14277.
  • [58] Peryt T., (Ed.) 1987. The Zechstein Facies in Europe. Springer, Berlin, Heidelberg.
  • [59] Petersen J.H., 1986. The natural gas storage in Denmark, Lille Torup gas cavern storage. Planning & completion. Problems of technical and environmental aspects solved. SMRI Fall Technical Conference, September 21-24,1986, Amsterdam, The Netherlands.
  • [60] Plaat H., 2009. Underground gas storage: Why and how. In: Evans D.J. & Chadwick, R.A. (eds) Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe. The Geological Society, London, Special Publications 313, 25-37.
  • [61] Poborski J., Skoczylas-Ciszewska K., 1963. O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Rocznik Polskiego Towarzystwa Geologicznego 33, 3, 340-347.
  • [62] Rautman C.A., Lord A.S., 2007a. Sonar Atlas of Caverns Comprising the U.S. Strategic Petroleum Reserve Volume 1: Bayou Choctaw Site, Louisiana. REPORT SAND2007-6134, Sandia National Laboratories Albuquerque, New Mexico.
  • [63] Rautman C.A., Lord A.S., 2007b. Sonar Atlas of Caverns Comprising the U.S. Strategic Petroleum Reserve Volume 2: Big Hill Site, Texas. REPORT SAND2007-6023, Sandia National Laboratories Albuquerque, New Mexico.
  • [64] Rautman C.A., Lord A.S., 2007c. Sonar Atlas of Caverns Comprising the U.S. Strategic Petroleum Reserve Volume 3: Bryan Mound Site, Texas. REPORT SAND2007-6067, Sandia National Laboratories Albuquerque, New Mexico.
  • [65] Reed A., Greene D., 2012. Salt Caverns in the Oil Sands. SMRI Spring 2012 Technical Conference 23-24 April 2012 Regina, Saskatchewan, Canada.
  • [66] Richter-Bernburg G., 1980. Salt tectonics, interior structures of salt bodies. Bulletin des centre de recherches exploration-production Elf-Aquitain 4, 1, 373-393.
  • [67] Richter-Bernburg G., 1987. Deformation within salt bodies. In: Lerche, I., O’Brien, J.J. (Eds.), Dynamical Geology of Salt and Related Structures. Academic Press, Inc., 39-75.
  • [68] Schléder Z., Burliga S., Urai J.L., 2007. Dynamic and static recrystallization-related microstructures in halite samples from the Klodawa salt wall (central Poland) as revealed by gamma-irradiation. Neues Jahrbuch für Mineralogie und Petrologie 184, 1, 17-28.
  • [69] Schléder Z., Urai J.L., Nollet S., Hilgers C., 2008. Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). International Journal of Earth Sciences 97, 5, 1045-1056.
  • [70] Schweinsberg H., 2012. Etzel Cavern Facility – An Energy Hub for Crude Oil and Gas Storage in Europe. SMRI Fall Meeting, 1-2 October 2010, Bremen, Germany.
  • [71] Smith D.B., 1996. Deformation in the late Permian Boulby halite (EZ3Na) in Teesside, NE England. Geological Society Special Publications 100, 77-88.
  • [72] Sobolik S.R., Ehgartner B.L., 2006, Analysis of Cavern Shapes for the Strategic Petroleum Reserve. Report SAND2006-3002, Sandia National Laboratories, Albuquerque, USA.
  • [73] Staudtmeister K., Rokahr R.B., 1997. Rock mechanical design of storage caverns for natural gas in rock salt mass. International Journal of Rock Mechanics & Mining Sciences 34, 3-4, Paper No. 300.
  • [74] Tadych J., Plucińska A., Drogowski J., Paribek J., 2014. Geological investigation of rock salt deposit “Mogilno I” on the basis of borehole Ground Penetrating Radar (GPR) measurements – the benefits, savings and safety issues. Salt Review 10, 5-12.
  • [75] Talbot C.J., Jackson M.P.A., 1987. Internal kinematics of salt diapirs. AAPG Bulletin 71, 9, 1068-1093.
  • [76] Wachowiak J., Pawlikowski M., Wilkosz P., 2012. Lithostratigraphy of Zechstein evaporates of the central and north-western parts of the Mogilno salt diapir, based on boreholes z-9 and z-17. Geology, Geophysics & Environment 38, 2, 115-151.
  • [77] Wachowiak J., 2017. Szczegółowa analiza budowy geologicznej zachodniej i południowo-zachodniej części wysadu solnego „Góra” pod kątem optymalnej lokalizacji komór solankowych i bezpiecznej eksploatacji złoża. Geosalt, Kraków.
  • [78] Wang T, Yan X, Yang H, Yang X, Jiang T, Zhao S., 2013. A new shape design method of salt cavern used as underground gas storage. Applied Energy 104, 50-61.
  • [79] Warren J.K., 2006. Evaporites: sediments, resources and hydrocarbons. Springer Springer-Verlag Berlin Heidelberg, 1042 pp.
  • [80] Wiehl A., Wilke F., Schweinsberg J., 2006. Etzel K202 – Leach and Fill Construction of a Tailor-made Oil Storage Cavern, (Update of 2004 Berlin Paper). SMRI Spring Meeting, 30 April-3 May 2006, Brussels, Belgium.
  • [81] Wei L., Deyi J.,Chen J., Daemen J.J.K., Tang K., Wu F., 2017. Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in China. Energy 143, 1006-1019.
  • [82] Wei L., Jie C., Deyi J., Xilin S., Li Y., Daemen J.J.K., Chunhe Y., 2016. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC). Applied Energy 178, 703-720.
  • [83] Wichowska A., 2019. Dodatek nr 6 do dokumentacji geologicznej złoża soli kamiennej ,,Góra’’. HPC POLGEOL S.A., Warszawa.
  • [84] Wichowska A., 2013. Dodatek nr 3 do dokumentacji geologicznej złoża soli kamiennej ,,Mogilno I’’ kat. rozpoznania C2+C1+B. Przedsiębiorstwo Geologiczne POLGEOL S.A., Warszawa.
  • [85] Yang C., Wang T., Li Y., Yang H., Li J., Qu D., Xu B., Yang Y., Daemen J.J.K., 2015. Feasibility analysis of using abandoned salt caverns for large-scale underground e nergy storage in China. Applied Energy, 137, 467-481.
  • [86] Yang C., Wang T., Li Y., Yang H., Li J., Qu D., Xu B., Yang Y., Daemen J.J.K., 2016. Feasibility analysis of using horizontal caverns for underground gas storage: A case study of Yunying salt district. Journal of Natural Gas Science and Engineering 36, 252-266.
  • [87] Zawisza A., 2013. Crude oil and liquid fuel storage capacity market. Geology, Geophysics & Environment 39, 3, 253-265.
  • [88] Zhang G., Li Y., Yang C., Daemen J.J.K., 2014. Stability and tightness evaluation of bedded rock salt formations for underground gas/oil storage. Acta Geotechnica 9, 161-179.
  • [89] Zirngast M., 1996. The development of the Gorleben salt dome (northwest Germany) based on quantitative analysis of peripheral sinks. In: Alsop, G.I., Blundell, D.J., Davison, I. (Eds.), Salt Tectonics, 100. Geological Society Special Publications, pp. 203-226.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fb21964-81ab-4763-bec2-68792069cd7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.