PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First-principles study on the adsorption structure of water molecules on a pyrite (100) surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydration structure of water molecule adsorption at different coverages of a monolayer on a pyrite (100) surface were simulated using the density functional theory (DFT) method. The results demonstrate that the Fe-O interaction weakens and the adsorption energy per water molecule decreases with increasing water coverage, except at a monolayer coverage of 12/12 (i.e., full coverage). H-S and H-O hydrogen bonds were formed on the nearest surface layer. When large amounts of water molecules adsorb onto the surface, the adsorbed water molecules can be divided into three layers: the layer nearest to the surface, the second nearest to the surface, and the layer farthest from the surface. The thickness of the former two layers is approximately 5.5 Å. The three layers have water densities of 1.12 g/cm3, 1.08 g/cm3, and 0.95 g/cm3, respectively, suggesting that there is a strong interaction between the pyrite surface and water molecules and the influence of surface structure on water adsorption reaches a distance of more than 10 Å. Dynamics simulations suggest that the water molecules close to the mineral surfaces are in an orderly arrangement while those far from the surface are disordered.
Słowa kluczowe
Rocznik
Strony
121--130
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
autor
  • School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
autor
  • Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China
Bibliografia
  • BRUNELLO, G.F., MATEKER, W.R., LEE, S.G., CHOI, J.I., JANG, S.S., 2011. Effect of temperature on structure and water transport of hydrated sulfonated poly (ether ether ketone): A molecular dynamics simulation approach, Journal of Renewable and Sustainable Energy. 3(4), 043111-16.
  • CHADI, D.J., 1977. Special points for Brillouin-zone integrations, Physical Review B. 16(4), 1746-1747.
  • CHANDER, S., 1991. Electrochemistry of sulfide flotation: Growth characteristics of surface coatings and their properties, with special reference to chalcopyrite and pyrite, International Journal of Mineral Processing. 33(1-4), 121-134.
  • CHEN, J.H., LONG, X.H., CHEN., Y., 2014. Comparison of Multilayer Water Adsorption on the Hydrophobic Galena (PbS) and Hydrophilic Pyrite (FeS2) Surfaces: A DFT Study, The Journal of Physical Chemistry C. 118, 11657-11665.
  • CHENG, F.Q., CAO, Q.B., GUAN, Y.S., CHENG, H.G., WANG, X.M., MILLER, J.D., 2013. FTIR analysis of water structure and its influence on the flotation of arcanite (K2SO4) and epsomite (MgSO4•7H2O), International Journal of Mineral Processing. 122, 36-42.
  • CLARK, S.J., SEGALLII, M.D., PICKARDII, C.J., HASNIP, P.J., PROBERT, M.I.J., REFSON, K., PAYNE, M.C., 2005. First principles methods using CASTEP, Z. Kristallogr. 220, 567-570.
  • CRISCENTI, L.J., HO, T.A., HART, D., 2018. Structural properties of aqueous solutions at the (100) and (101) goethite surfaces by molecular dynamics simulation, Langmuir. 34(48), 8b02612.
  • de LEEUW, N.H., PARKER, S.C., SITHOLE, H.M., NGOEPE, P.E., 2000. Modeling the surface structure and reactivity of pyrite: introducing a potential model for FeS2, Journal of Physical Chemistry B. 104(33), 7969-7976.
  • FENG, B., ZHONG, C.H., ZHANG, L.Z., GUO, Y.T., WANG, T., HUANG, Z.Q., 2020. Effect of surface oxidation on the depression of sphalerite by locust bean gum, Minerals Engineering. 146, 106142.
  • GUEVREMONT, J.M., BEBIE, J., ELSETINOW, A.R., STRONGIN, D.R., SCHOONEN, M.A.A., 1998. Reactivity of the (100) plane of pyrite in oxidizing gaseous and aqueous environments: effects of surface imperfections, Environmental Science & Technology. 32(23), 1453–1457.
  • JIN J.Q., 2016. Wetting and interfacial water analysis of selected mineral surfaces as determined by molecular dynamics simulation and sum frequency vibrational spectroscopy, University of Utah.
  • JIN, J.Q., MILLER, J.D., DANG, L.X., WICK, C.D., 2015. Effect of surface oxidation on interfacial water structure at a pyrite (100) surface as studied by molecular dynamics simulation, International Journal of Mineral Processing. 139, 64-76.
  • KNIPE, S.W., MYCROFT, J.R., PRATT, A.R., NESBITT, H.W., BANCROF., G.M., 1995. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals, Geochimica et Cosmochimica Acta. 59(6), 1079-1090.
  • LI, Y.Q., CHEN, J.H., CHEN, Y., ZHAO, C.H., ZHANG, Y.B., KE., B.L., 2018. Interactions of Oxygen and Water Molecules with Pyrite Surface: A New Insight, Langmuir. 34, 1941-1952.
  • LI, Y.Q., CHEN, J.H., CHEN, Y., ZHU, Y.G., LIU, Y.C., 2019. DFT Simulation on Interaction of H2O Molecules with ZnS and Cu-Activated Surfaces, The Journal of Physical Chemistry C. 123, 3048-3057.
  • LIU, X.W., ZHU, R.L., MA, J.F., GEI, F., XU, Y., LIU, Y., 2013. Molecular dynamics simulation study of benzene adsorption to montmorillonite: Influence of the hydration status, Colloids and Surfaces A-Physicochemical and Engineering Aspects. 434(19), 200–206.
  • MENG, S., WANG, E.G., GAO, S.W., 2004. Water adsorption on metal surfaces: A general picture from density functional theory studies, Physical Review B, Condensed Matter. 69(19), 195404:1-13.
  • NESBITT, H.W., MUIR., I.J., 1994. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapor and air, Geochimica et Cosmochimica Acta. 58(21), 4667-4679.
  • PERDEW, J.P., CHEVARY, J.A., VOSKO, S.H., JACKSON, K.A., PEDERSON, M.R., SINGH, D.J., FIOLHAIS, C., 1993. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B. 48(7), 4978-4978.
  • PERDEW, J.P., WANG, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B. 45(23), 13244-13249.
  • PETTENKOFER, C., JAEGERMANN, W., BRONOLD, M., 1991. Site specific surface interaction of electron donors and acceptors on FeS2 (100) cleavage planes, Berichte Der Bunsengesellschaft Für Physikalische Chemie. 95, 560-565.
  • PHILPOTT, M.R., GOLINEY, I.Y., LIN, T.T., 2004. Molecular dynamics simulation of water in a contact with an iron pyrite FeS2 surface, Journal of Chemical Physics. 120(4), 1943-1950.
  • PRINCE, K.C., MATTEUCCI, M., KUEPPER, K., CHIUZBAIAN, S.G., BARTKOWSKI, S., NEUMANN, M., 2005. Core-level spectroscopic study of FeO and FeS2, Physical Review B. 71, 0851021-0851029.
  • ROSSO, K.M., BECKER, U., HOCHELLA, M.F., 1999. The interaction of pyrite {100} surfaces with O2 and H2O: Fundamental oxidation mechanisms, American Mineralogist. 84(10), 1549-1561.
  • SANDRINA, M., UTA., M., 2010. Investigation of the water-pyrite-(100)-interface with GIXRD, Acta Crystallographica. 66(a1), s98-s99.
  • SEGALL, M.D., LINDAN, P.J.D., PROBERT, M.J., PICKARD, C.J., HASNIP, P.J., CLARK S.J., PAYNE, M.C., 2002. First-principles simulation: ideas, illustrations and the CASTEP code, Journal of Physics Condensed Matter. 14(11), 2717-2744.
  • SIT, H.L., COHEN, M.H., SELLONI, A., 2012. Interaction of Oxygen and Water with the (100) Surface of Pyrite: Mechanism of Sulfur Oxidation, Journal of Physical Chemistry Letters. 3(17), 2409-2414.
  • STIRLING, A., BERNASCONI, M., PARRINELLO, M., 2003. Ab initio simulation of water interaction with the (100) surface of pyrite, Journal of Chemical Physics. 118(19), 8917-8926.
  • SUN, J.H., 1998. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, Journal of Physical Chemistry B. 102, 7338-7364.
  • TAUSON, V.L., BABKIN, D.N., LUSTENBERG, E.E., LIPKO, S.V., PARKHOMENKO, I.YU., 2008. Surface typochemistry of hydrothermal pyrite: Electron spectroscopic and scanning probe microscopic data. I. Synthetic pyrite, Geochemistry International. 46(6), 565-577.
  • TICHOMIROWA, M., JUNGHANS, M., 2009. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments, Applied Geochemistry. 24(11), 2072-2092.
  • VANDERBILT, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B. 41, 7892–7895.
  • XI, P., SHI, C.X., YAN, P.K., LIU, W.L., TANG. L.G., 2019. DFT study on the influence of sulfur on the hydrophobicity of pyrite surfaces in the process of oxidation, Applied Surface Science. 466, 964-969.
  • ZHANG, Y.Y., CHEN, M., DENG, Y., JIN, Y., LU, Y.H., XIA, Y., 2018. Molecular Dynamics Simulation of Temperature and Pressure Effects on Hydration Characteristics of Montmorillonites, Journal of the Chinese Ceramic Society. 46(10), 1489-1498.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fb055ef-4d30-4541-9609-37865b95f980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.