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Abstract 
Extreme learning machine (ELM) is an efficient algorithm, but it requires more 
hidden nodes than the BP algorithms to reach the matched performance. 
Recently, an efficient learning algorithm, the upper-layer-solution-unaware 
algorithm (USUA), is proposed for the single-hidden layer feed-forward neural 
network. It needs less number of hidden nodes and testing time than ELM. In 
this paper, we mainly give the theoretical analysis for USUA. Theoretical 
results show that the error function monotonously decreases in the training 
procedure, the gradient of the error function with respect to weights tends to 
zero (the weak convergence), and the weight sequence goes to a fixed point (the 
strong convergence) when the iterations approach positive infinity. An 
illustrated simulation has been implemented on the MNIST database of 
handwritten digits which effectively verifies the theoretical results.. 

Key words: Neural networks, Monotonicity, Weak convergence, Strong 
convergence, USUA, MNIST. 

1 Introduction 

Neural network has been a hot topic recently in many fields, such as cognitive 
science, prediction, classification, computational intelligence. The back-
propagation (BP) algorithm is one of the most widely used techniques for 
training feed-forward neural networks (FNN), which was separately proposed 
by Werbos [1] and Rumelhart et al.[2]. The BP algorithm attempts to mini-
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mize the least squared error of objective function, which is defined by the 
differences between the actual outputs and the desired outputs [3]. In BP algo-
rithm, all the weights of FNN need to be tuned along the negative gradient 
direction of the error function using the gradient descent method.  

The BP algorithm for FNN has the ability of approximating nonlinear 
functions directly from the input samples. However, the training procedure of 
the BP algorithm is usually very time consuming. The reasons come from two 
aspects: (1) the gradient-based learning algorithms are used in training the 
neural networks, and (2) all weights of the neural networks are tuned in each 
iteration.  

To overcome these shortcomings, Huang et al.[4] proposed a novel learn-
ing algorithm called extreme learning machine (ELM) for single-hidden layer 
feed-forward neural networks (SHLFN), which randomly chooses hidden 
weights and determines the output weights of SHLFN. 

Specifically speaking, in ELM algorithm, the weights connecting the input 
and hidden layers are selected randomly, and the weights connecting the hid-
den and output layers are only calculated using the pseudo inverse once. 
There is no iteration step in the training procedure. In addition, the training 
speed of ELM is much faster than that of the BP learning algorithms when 
reaching the comparable performance.  

Although ELM can be trained efficiently, it requires more hidden nodes 
than the BP algorithms for the trained neural networks. This apparently in-
creases testing time which does not effectively work well in real applications.  

Yu et al.[5] proposed a series of efficient learning algorithms for SHLFN. 
The main idea is that, giving the initial weights of FNN, the weights connect-
ing the input and hidden layers are tuned in the negative gradient direction 
along which the square error is reduced the most, and then the weights con-
necting the hidden and output layers are calculated using the pseudo inverse. 
Numerical experiment shows that the proposed algorithms in [5] need less 
number of hidden nodes and testing time than ELM.  

Unfortunately, there is little theoretical analysis to guarantee the conver-
gent behavior during training. In this paper, we rigorously prove the theoreti-
cal results for the upper-layer-solution-unaware algorithm (USUA) proposed 
by Yu et al.[5]. The error function monotonously decreases during training. 
The weak convergence and the strong convergence show that the gradient of 
the error function goes to zero, and the weight sequence goes to a unique 
fixed point, respectively. Numerical experiment on the MNIST database of 
handwritten digits [6] verifies these theoretical results.  

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to USUA. Section 3 presents the main theoretical results of USUA. 
Section 4 rigorously proves these theoretical results. A numerical experiment 
is simulated in Section 5. 
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2 USUA  

The SHLFN is considered. The number of nodes of the input, hidden and 
output layers are set to be D, L and C, respectively.  

The matrix 1 2( , , , ) D L
L R  W w w w represents the weight connec-

tions between the input and hidden layers, where 
1 2( , , , )T D

i i i Diw w w R w   is the weight vector connecting the input 

nodes and the i-th hidden node. 1 2( , , , ) L C
C R  U u u u  denotes the 

weight matrix connecting the hidden and output layers, where 
1 2( , , , )T L

i i i Liu u u R u   is the weight vector connecting the hidden 
nodes and the i-th output node. For simplicity, W  is rewritten as 

1 2( , , , )T T T T DL
L R V w w w .  

Let , :g f R R  be the given activation functions of the hidden and 
output layers, respectively. For any given vector 1 2( , , , )T L

Lz z z R z  , 
the vector valued function is introduced, denoting as  
 1 2( ) ( ( ), ( ), , ( ))T L

Lg z g z g z R G z  . (1) 
For any given output vector DRx , the actual output vector of the neu-

ral network is CRy , i.e.  
 ( ( )).T Tfy U G W x  

Yu et al.[5] present an efficient and effective algorithm for training 
SHLFN named USUA. The basic idea of USUA is as follows: when the initial 
value of V and U are given, the weight matrix U is then fixed, and the weight 
matrix V is updated by using the gradient descend method until it reaches the 
stop criteria. Then, U is calculated using the pseudo inverse. The detailed 
description is as follows.  

Given a training sample set with N samples, 1{ }N
iX x is the set of the 

input vectors, 1{ }N
iT t is the set of the corresponding ideal outputs, and the 

actual output of the output layer are 1{ }N
iY y , where D

i Rx , C
i Rt , 

C
i Ry . The objective function of the neural networks is defined as follows,  

2

F

1( )
2

E  V Y T 2

1

1=
2

N

i i
i

 y t  

2

1

1= ( ( ))
2

N
T T

i i
i

f


 U G W x t  
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2

1 1

1= ( ( ( )) )
2

N C
T T
j i ji

i j
f t

 

 u G W x  

 
1 1

= ( ( ))
N C

T T
ji j i

i j
f

 
 u G W x , (2) 

where F  and   stand for the Frobenius norm of matrix and the Euclide-

an norm of vector, respectively, and 21( ) ( ( ) )
2ji jif s f s t  , s R . 

The gradients of the error function ( )E V  with respect to 
( 1,2, , )k k Lw   are 

 ' '

1 1
( ) ( ( )) ( )

k

N C
T T T

ji j i kj k i i
i j

E f u g
 

w V u G W x w x x . (3) 

Denote 
 

1 2
( ) (( ( )) , ( ( )) , , ( ( )) )

L

T T T TE E E EV w w wV V V V . (4) 
For any given initial weight vector 0V  and U , V  can be iterated by 

the following formula 
 1 , 0,1,2,n n n n    V V V  , (5) 
where 1 2=(( ) , ( ) , , ( ) )n n T n T n T T

L   V w w w , and  

 ' '

1 1
( ( )) ( )

N C
n T T T
k ji j i kj k i i

i j
f u g

 

   w u G W x w x x , (6) 

where 0   is the learning rate.  
At last, U is calculated using the pseudo inverse.  

3 The main convergence results 

To analyze the convergence of USUA, the following assumptions are needed.  
(A1)The activation functions g  and f  satisfy that, ( )g s , ( )f s ,

' ( )g s , ' ( )f s , '' ( )g s  and '' ( )f s  are all uniformly bounded for any 
s R .  

(A2) There are finitely many points in the set 
0 { : ( ) 0}E   VV V , where   is a bounded closed region. 

Theorem 1. Assume that assumption (A1) is valid, and the learning rate  
satisfies the formula (21) behind. Then, for any arbitrary initial weight vector

0V , the sequence { ( )}nE V monotonously decreases, i.e.  
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 1( ) ( )n nE E V V ; (7) 
there exists * 0E  , such that  

 
*lim ( )n

n
E E


V ; (8) 

and the weak convergence result holds,  
 lim ( ) 0n

n
E


V V . (9) 

In addition, if assumption (A2) is also valid, then the strong convergence 
result holds, i.e. there exists *

0V , such that  

 
*lim n

n
V V . (10) 

4 The Proofs 

The proofs of the convergence results (Theorem 1) are presented as follows. 
Firstly, two useful lemmas are given. For sake of consistency, denote  
 1n n n

k k k
  w w w , (11) 

 , , 1, ,(( ) )n i n T n i n i n i
i

  G G W x φ G G， . (12) 

Lemma 1. If assumption (A1) is valid, then there exist 1 0c   and 2 0c  , 
satisfying 

 
2 2,

1
1

, 1, 2, , , 1, 2,
L

n i n
k

k
c i N n



   φ w   , (13) 

 ' "
2 2( ) , ( ) , , 1, 2, , , 1, 2, ,ji jif s c f s c s R i N j C      . (14) 

Proof. According to assumption (A1) and the Taylor expansion, we get  

2 2, 1, ,=n i n i n i φ G G

21
1 1

1
2 2

1

(( ) ) (( ) )
(( ) ) (( ) )

(( ) ) (( ) )

n T n T
i i

n T n T
i i

n T n T
L i L i

g g
g g

g g







 
 

   
   

w x w x
w x w x

w x w x


 

2'
1, , 1

'
2, , 2

'
, ,

( ) ( )
( ) ( )

=

( ) ( )

n T
i n i

n T
i n i

n T
L i n L i

g s
g s

g s

 
 

 
 
   

w x
w x

w x

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2' 2

1 1
(sup ( ) max )

L
n

i ki Ns R k
g s

  

 x w  

2

1
1

L
n
k

k
c



  w ,  

where 
' 2

1 1
(sup ( ) max )ii Ns R

c g s
 

 x , and , , ( 1, 2, , )k i ns k L  lies between
1( )n T

k i
w x  and ( )n T

k iw x .  

By the expression of ( )jif s  and assumption (A1), it is easily known that  
' "

2 2( ) , ( ) , 1, 2, , , 1, 2, , , ,ji jif s c f s c i N j C s R       

where 
' ' 2 "

2 max{sup ( ( ) ) ( ) , sup ( ( )) ( ( ) ) ( )}ji ji
s R s R

c f s t f s f s f s t f s
 

    . 

The following lemma is the same as Theorem 14.1.5 [7], therefore we only 
list it below without proof.  
Lemma 2. [7] Let : ( , 1)n mF R R n m     be continuous on a bound-
ed closed region nR , and 0 { : ( ) 0}F   z z  be a finite set. Let 
{ }k z  be a sequence satisfying 

(1) lim ( ) 0k

k
F


z ,  

(2) 1lim 0k k

k




 z z ,  

then, there exists a *
0z  such that 

*lim k

k
z z .  

Next, the proofs for (7)-(10) are successively presented as follows.  
Proof for (7).  
By (2) and the Taylor expansion, we have  

1( ) ( )n nE E V V  

1, ,

1 1
[ ( ) ( )]

N C
T n i T n i

ji j ji j
i j

f f

 

  u G u G  

' , 1, , " 1, , 2
,

1 1

1[ ( ) ( ) ( )( ( )) ]
2

N C
T n i T n i n i T n i n i

n iji j j ji j
i j

f f s 

 

    u G u G G u G G

 
0 1   , (15) 
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where ' , 1, ,
0

1 1
( ) ( )

N C
T n i T n i n i

ji j j
i j

f 

 

  u G u G G ,  

" 1, , 2
,1

1 1

1 ( )( ( ))
2

N C
T n i n i

n iji j
i j

f s 

 

  u G G , and ,n is  lies between 1,T n i
j

u G  

and ,T n i
ju G .  

By the Taylor expansion and (6),  
' , 1

0
1 1 1

( )[ ( (( ) ) (( ) ))]
N C L

T n i n T n T
ji j kj k i k i

i j k
f u g g 

  

  u G w x w x  

' , ' " 2
, ,

1 1 1 1

1( )[ (( ) )( ) ( )(( ) ) ]
2

N C L L
T n i n T n T n T

k i nji j kj k i k i kj k i
i j k k

f u g u g s
   

     u G w x w x w x  

2

2
1

1 L
n
k

k


 

    w , (16) 

where ' , " 2
, ,2

1 1 1

1= ( ) ( )(( ) )
2

L N C
T n i n T

k i nji j kj k i
k i j

f u g s
  

 u G w x , and , ,k i ns  lies 

between 1( )n T
k i
w x  and ( )n T

k iw x .  
By (15) and (16),  

 
21

2 1
1

1( ) ( )
L

n n n
k

k
E E  






     V V w . (17) 

As (15),U  is fixed and the triangle inequality,  
2,

1 2
1 1

1
2

N C
T n i
j

i j
c

 

  u φ  

22
2 111 1 1

1 (max )
2

N C L
n

j kj Ci j k
c c

   

  u w  

22
2 1 1 1

1= (max )
2

L
n

j kj C k
c NCc

 


u w  

2

3
1

=
L

n
k

k
c



 w , (18) 

where 2
3 2 1 1

1 (max )
2 jj C

c c NCc
 

 u .  

By assumption (A1) and (14),  
22"

2 2 1 11 1 1

1 max sup ( ) max
2

L N C
n

j i kj C i Ns Rk i j
c g s

     

  u x w  



12

Convergence Analysis of ... 
 

 

22"
2 1 1 1

1 max sup ( ) max
2

L
n

j i kj C i Ns R k
NCc g s

    

 u x w  

2

4
1

=
L

n
k

k
c



 w , (19) 

where 
2"

4 2 1 1

1 max sup ( ) max
2 j ij C i Ns R

c NCc g s
   

 u x .  

Therefore, by (17), (18) and (19) 
1( ) ( )n nE E V V  

2 2 2

4 3
1 1 1

1 L L L
n n n
k k k

k k k
c c

   

        w w w  

2

5
1

1( )
L

n
k

k
c

 

    w  

2

1
=

L
n
k

k




  w , (20) 

where 5 3 4c c c  ， 5
1 c


  . Set  

 
5

10
c

  , (21) 

then, 1( ) ( )n nE E V V . The monotonicity is proved.  
Proof for (8).  
For any 0,1, 2,n   , ( ) 0nE V . Then, by (7), the sequence { ( )}nE V
monotonously decreases. Therefore, there exists 0E   such that 

*lim ( )n

n
E E


V .  

Proof for (9).  
By (20), we obtain  

21

1
( ) ( )

L
n n n

k
k

E E 



  V V w  

2 21 1

1 1
( )

L L
n n n

k k
k k

E   

 

     V w w  

20

0 1
( )

n L
i
k

i k
E 

 

   V w .  

For any 0n  , we have ( ) 0nE V . Therefore, 
2 0

0 1
( )

n L
i
k

i k
E

 

  w V .  
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By (3), (4) and (6), taking n  , and changing indexes,  
2 22 0

0 1 0
( ) ( )

L
n n
k

n k n
E E 

 

  

      Vw V V . 

Then, we have lim ( ) 0n

n
E


V V . The weak convergence is proved.  

Proof for (10).  
By (3)-(6),  

1 = = ( )n n n nE   VV V V V .  
Thus, using (9), we get  

1lim =0n n

n




V V .  

By (A2), the conditions of lemma 2 are valid. Therefore, there exists 

0
 V satisfying 

*lim n

n
V V .The strong convergence is proved.  

5 Numerical experiment  

The MNIST database of handwritten digits contains 60,000 training samples 
and 10,000 testing samples. Each digital image has been normalized to an 
image 28×28 pixels, and expanded as a 784×1 vector. The elements of these 
digital vectors are the integer numbers between 0-255.  

According to the property of MNIST, we construct a network model 
whose structure is set to be 784-128-10. The learning rate is selected as a con-
stant 0.0007. The activation functions of hidden and output layers are with the 

common sigmoid function 
1( )

1 xg x
e


 and the linear function, respec-

tively. The initial weights are randomly assigned in the interval [ 1,1]  . The 
stop criteria are set to be: 1,000 training epochs or the error below 0.01.  

Figure 1 and Figure 2 display the classification ability of the USUA on 
training and testing samples. To show the details clearly, the accuracies are 
recorded for each training epoch. We observe that the USUA has the similar 
performance on both training and testing samples. In addition, the two curves 
drastically increase in the early training stage and then maintain with a stable 
status.  

In Figure 3, it shows the error values of each training epoch. Correspond-
ing to the training performance in Figure 2, the errors sharply decrease in the 
early training epochs, and the approach the minimum. This effectively verifies 
the monotonicity of error function which is proved in Theorem 1.  

For the last Figure 4, the norms of the gradient of error function with re-
spect to weight vectors have been graphed along with epochs. Although the 



14

Convergence Analysis of ... 
 

 

curve shows the oscillation behavior in the training process, it still demon-
strates that the norms tend to small values near zero along with the increasing 
epochs. This then illustrates the proved weak convergence of USUA in Theo-
rem 1.  
 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. The curve of training accuracy Figure 2. The curve of testing 
 accuracy

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The curve of error function Figure 4. The norms of the gradient 

of error function with respect  
to weight vectors 

6 Conclusion  

In this paper, we mainly rigorously prove the theoretical results of USUA 
proposed by Yu et al.[5], including the monotonicity of error function, the 
weak and strong convergence. The error function monotonously decreases in 
the training procedure. The weak and strong convergence indicate that the 
gradient of the error function with respect to weights tends to zero and the 
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weight sequence goes to a fixed point when the iterations approach positive 
infinity, respectively. Numerical experiment on the MNIST database of 
handwritten digits support these theoretical results.  
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