PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of dispersion slope on soliton spectral tunneling in photonic crystal fiber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report a numerical investigation of how the dispersion slope affects the soliton spectral tunneling (SST) in a photonic crystal fiber with three zero dispersion wavelengths. It is discovered that a larger dispersion slope makes group-velocity mismatch between the initial soliton and the transferred wave thereby suppressing the SST effect, while a proper decrease of the dispersion slope enhances the SST effect to widen a supercontinuum range. Besides, we find a soliton-like leaking dispersion wave, which can sustain information and energy for a short time within a particular spectral range.
Czasopismo
Rocznik
Strony
415--427
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, P.R. China
autor
  • College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, P.R. China
  • Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha 410082, P.R. China
  • China Unicom Changsha Branch, Changsha 410082, P.R. China
autor
  • College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, P.R. China
autor
  • College of Information Science and Engineering, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, P.R. China
Bibliografia
  • [1] HOSSEINI P., ERMOLOV A., TANI F., NOVOA D., RUSSELL P.ST.J., UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber, ACS Photonics 5(6), 2018, pp. 2426–2430, DOI: 10.1021/acsphotonics.8b00197.
  • [2] PETERSEN C.R., ENGELSHOLM R.D., MARKOS C., BRILLAND L., CAILLAUD C., TROLÈS J., BANG O., Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers, Optics Express 25(13), 2017, pp. 15336–15348, DOI: 10.1364/OE.25.015336.
  • [3] HERRMANN J., GRIEBNER U., ZHAVORONKOV N., HUSAKOU A., NICKEL D., KNIGHT J.C., WADSWORTH W.J., RUSSELL P.ST.J., KORN G., Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers, Physical Review Letters 88(17), 2002, article 173901, DOI: 10.1103/PhysRevLett.88.173901.
  • [4] FU L., THOMAS B.K., DONG L., Efficient supercontinuum generations in silica suspended core fibers, Optics Express 16(24), 2008, pp. 19629–19642, DOI: 10.1364/OE.16.019629.
  • [5] MITSCHKE F.M., MOLLENAUER L.F., Discovery of the soliton self-frequency shift, Optics Letters 11(10), 1986, pp. 659–661, DOI: 10.1364/OL.11.000659.
  • [6] ZHAO S., YANG H., ZHAO C., XIAO Y., Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber, Optics Express 25(7), 2017, pp. 7192–7202, DOI: 10.1364/OE.25.007192.
  • [7] ROY S., BHADRA S.K., AGRAWAL G.P., Effects of higher-order dispersion on resonant dispersive waves emitted by solitons, Optics Letters 34(13), 2009, pp. 2072–2074, DOI: 10.1364/OL.34.002072.
  • [8] MAHALINGAM A., MANI RAJAN M.S., Influence of generalized external potentials on nonlinear tunneling of nonautonomous solitons: soliton management, Optical Fiber Technology 25, 2015, pp. 44–50, DOI: 10.1016/j.yofte.2015.07.013.
  • [9] FENG X., POLETTI F., CAMERLINGO A., PARMIGIANI F., PETROPOULOS P., HORAK P., PONZO G.M., PETROVICH M., SHI J., LOH W.H., RICHARDSON D.J., Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths, Optical Fiber Technology 16(6), 2010, pp. 378–391, DOI: 10.1016/j.yofte.2010.09.014.
  • [10] POLETTI F., HORAK P., RICHARDSON D.J., Soliton spectral tunneling in dispersion-controlled holey fibers, IEEE Photonics Technology Letters 20(16), 2008, pp. 1414–1416, DOI: 10.1109/LPT.2008.927881.
  • [11] KIBLER B., LACOURT P.A., COURVOISIER F., DUDLEY J.M., Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect, Electronics Letters 43(18), 2007, pp. 967–968, DOI: 10.1049/el:20071553.
  • [12] GUO H., WANG S., ZENG X., BACHE M., Understanding soliton spectral tunneling as a spectral coupling effect, IEEE Photonics Technology Letters 25(19), 2013, pp. 1928–1931, DOI: 10.1109/LPT.2013.2279122.
  • [13] NAPIERAŁA M., NASILOWSKI T., BEREŚ-PAWLIK E., MERGO P., BERGHMANS F., THIENPONT H., Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss, Optics Express 19(23), 2011, pp. 22628–22636, DOI: 10.1364/OE.19.022628.
  • [14] STEPNIEWSKI G., KLIMCZAK M., BOOKEY H., SIWICKI B., PYSZ D., STEPIEN R., KAR A.K., WADDIE A.J., TAGHIZADEH M.R., BUCZYNSKI R., Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm, Laser Physics Letters 11(5), 2014, article 055103, DOI: 10.1088/1612-2011/11/5/055103.
  • [15] KNIGHT J.C., Photonic crystal fibres, Nature 424, 2003, pp. 847–851, DOI: 10.1038/nature01940.
  • [16] STARK S.P., BIANCALANA F., PODLIPENSKY A., RUSSELL P.ST.J., Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points, Physical Review A 83(2), 2011, article 023808, DOI: 10.1103/PhysRevA.83.023808.
  • [17] AKHMEDIEV N., KARLSSON M., Cherenkov radiation emitted by solitons in optical fibers, Physical Review A 51(3), 1995, pp. 2602–2609, DOI: 10.1103/PhysRevA.51.2602.
  • [18] KAUP D.J., NEWELL A.C., An exact solution for a derivative nonlinear Schrödinger equation, Journal of Mathematical Physics 19(4), 1978, pp. 798–801, DOI: 10.1063/1.523737.
  • [19] WANG S., GUO H., FAN D., BAI X., ZENG X., Analysis of cascaded soliton spectral tunneling effect in segmented fibers with engineered dispersion, IEEE Photonics Journal 5(6), 2013, article 6100608, DOI: 10.1109/JPHOT.2013.2290001.
  • [20] MAREST T., BRAUD F., CONFORTI M., WABNITZ S., MUSSOT A., KUDLINSKI A., Longitudinal soliton tunneling in optical fiber, Optics Letters 42(12), 2017, pp. 2350–2353, DOI: 10.1364/OL.42.002350.
  • [21] ZHAO S., YANG H., ZHAO Y., XIAO Y., Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling, Chinese Physics B 27(11), 2018, article 114219, DOI: 10.1088/1674-1056/27/11/114219.
  • [22] AGRAWAL G.P., Nonlinear Fiber Optics, 4th Ed., New York 2007.
  • [23] JOLY N.Y., OMENETTO F.G., EFIMOV A., TAYLOR A.J., KNIGHT J.C., RUSSELL P.ST.J., Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber, Optics Communications 248(1–3), 2005, pp. 281–285, DOI: 10.1016/j.optcom.2004.11.091.
  • [24] YANG H., HAN F., HU H., WANG W., ZENG Q., Spectral-temporal analysis of dispersive wave generation in photonic crystal fibers of different dispersion slope, Journal of Modern Optics 61(5), 2014, pp. 409–414, DOI: 10.1080/09500340.2014.890252.
  • [25] ZHAO S., YANG H., CHEN N., FU X., ZHAO C., Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersion wavelengths, IEEE Photonics Journal 7(5), 2015, article 7102709, DOI: 10.1109/JPHOT.2015.2486683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fac07fd-8ac2-4c6a-8edc-d463ed736ab9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.