PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper selected numerical modelling problems for an advanced thermal-FSI ("Fluid Solid Interaction") mini-channel heat exchanger model are presented. Special attention is given to the heat transfer between the separated mediums for different mass flows. Similar modelling problems have also been discussed in the literature dedicated to numerical and theoretical modelling problems for typical heat exchangers [1, 2, 3]. Basic tests, including a comparison with experimental data, have been conducted using a Mini-channel Plate Heat Exchanger (MPHE). The MPHE was made out of two gasketed brazed plates with 40 mm long rectangular cross section channels (width - 1 mm, depth - 700 μm). The thermal-FSI analysis was applied for the heat exchanger model with one hot and one cold water flow passage through the mini-channels. Satisfactory agreement between the modelling results and the experimental data [4] was obtained.
Rocznik
Strony
373--381
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warszawa, Poland
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] J. Badur, H. Charun, Selected problems of heat exchange modelling in pipe channels with ball turbulisers, Archives of Thermodynamics 28 (1) (2007) 65–88.
  • [2] J. Badur, P. Ziółkowski, W. Zakrzewski, D. Sławiński, S. Kornet, T. Kowalczyk, J. Hernet, R. Piotrowski, J. Felincjancik, P. Ziółkowski, An advanced thermal-fsi approach to flow heating/cooling, in: Journal of Physics: Conference Series, Vol. 530, IOP Publishing, 2014, p. 012039.
  • [3] J. Badur, Five lectures of contemporary fluid thermomechanical fluids, 2 edition, Gdańsk, (in Polish) (2005).
  • [4] D. Mikielewicz, J. Wajs, Possibilities of heat transfer augmentation in heat exchangers with minichannels for marine applications, Polish Maritime Research 24 (s1) (2017) 133–140.
  • [5] A. M. Adham, N. Mohd-Ghazali, R. Ahmad, Thermal and hydrodynamic analysis of microchannel heat sinks: A review, Renewable and Sustainable Energy Reviews 21 (2013) 614–622.
  • [6] A. Bejan, A. D. Kraus, Heat transfer handbook, Vol. 1, John Wiley & Sons, 2003.
  • [7] T. Dixit, I. Ghosh, Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids, Renewable and Sustainable Energy Reviews 41 (2015) 1298–1311.
  • [8] M. Feidt, Finite Physical Dimensions Optimal Thermodynamics 1 Fundamentals, ISTE Press /Elsevier, 2017.
  • [9] Y. Han, Y. Liu, M. Li, J. Huang, A review of development of microchannel heat exchanger applied in air-conditioning system, Energy Procedia 14 (2012) 148–153.
  • [10] Q. Li, G. Flamant, X. Yuan, P. Neveu, L. Luo, Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers, Renewable and Sustainable Energy Reviews 15 (9) (2011) 4855–4875.
  • [11] F. Pra, P. Tochon, C. Mauget, J. Fokkens, S. Willemsen, Promising designs of compact heat exchangers for modular htrs using the brayton cycle, Nuclear Engineering and Design 238 (11) (2008) 3160–3173.
  • [12] J. Hesselgreaves, Compact Heat Exchangers: Selection, Design and Operation, Gulf Professional Publishing, 2001.
  • [13] J. Madejski, Theory of heat transfer, Szczecin University of Technology, Szczecin.
  • [14] E. P. Gyftopoulos, G. P. Beretta, Thermodynamics: foundations and applications, Courier Corporation, 2005.
  • [15] A. C. Caputo, P. M. Pelagagge, P. Salini, Heat exchanger optimized design compared with installed industrial solutions, Applied Thermal Engineering 87 (2015) 371–380.
  • [16] M. M. A. Bhutta, N. Hayat, M. H. Bashir, A. R. Khan, K. N. Ahmad, S. Khan, Cfd applications in various heat exchangers design: A review, Applied Thermal Engineering 32 (2012) 1–12.
  • [17] L. S. Ismail, R. Velraj, C. Ranganayakulu, Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers—a review, Renewable and Sustainable Energy Reviews 14 (1) (2010) 478–485.
  • [18] W. Dahmen, S. Müller, M. Rom, S. Schweikert, M. Selzer, J. von Wolfersdorf, Numerical boundary layer investigations of transpirationcooled turbulent channel flow, International Journal of Heat and Mass Transfer 86 (2015) 90–100.
  • [19] M. Khoshvaght-Aliabadi, F. Nozan, Water cooled corrugated minichannel heat sink for electronic devices: Effect of corrugation shape, International Communications in Heat and Mass Transfer 76 (2016) 188–196.
  • [20] C. Fernandes, R. Dias, J. Nobrega, J. Maia, Laminar flow in chevrontype plate heat exchangers: Cfd analysis of tortuosity, shape factor and friction factor, Chemical Engineering and Processing: Process Intensification 46 (9) (2007) 825–833.
  • [21] M. Saeed, M.-H. Kim, Header design approaches for mini-channel heatsinks using analytical and numerical methods, Applied Thermal Engineering 110 (2017) 1500–1510.
  • [22] K. Śmierciew, M. Kołodziejczyk, J. Gagan, D. Butrymowicz, Numerical modelling of fin heat exchanger in application to cold storage, Heat Transfer Engineering (just-accepted).
  • [23] G. A. Jaglarz, D. Taler, Experimental study of fouling in plate heat exchangers in district heating systems, Journal of Power Technologies 95 (5) (2015) 42.
  • [24] R. Mastrullo, A. Mauro, R. Revellin, L. Viscito, Modeling and optimization of a shell and louvered fin mini-tubes heat exchanger in an orc powered by an internal combustion engine, Energy Conversion and Management 101 (2015) 697–712.
  • [25] B. Agostini, B. Watel, A. Bontemps, B. Thonon, Friction factor and heat transfer coefficient of r134a liquid flow in mini-channels, Applied Thermal Engineering 22 (16) (2002) 1821–1834.
  • [26] T. Morosuk, C. Morosuk, M. Feidt, New proposal in the thermodynamic analysis of complex heat regeneration systems, Energy 29 (12) (2004) 2517–2535.
  • [27] V. Dvořák, T. Vít, Evaluation of cae methods used for plate heat exchanger design, Energy Procedia 111 (2017) 141–150.
  • [28] J. Badur, M. Karcz, M. Lemański, On the mass and momentum transport in the navier–stokes slip layer, Microfluidics and Nanofluidics 11 (4) (2011) 439–449.
  • [29] J. Badur, P. Ziółkowski, W. Zakrzewski, D. Sławinski, M. Banaszkiewicz, O. Karczmarczyk, S. Kornet, P. Ziółkowski, On the surface vis impressa caused by a fluid-solid contact, Shell Structures:
  • Theory and Applications 3 (2013) 53.
  • [30] J. Badur, P. J. Ziółkowski, P. Ziółkowski, On the angular velocity slip in nano-flows, Microfluidics and Nanofluidics 19 (1) (2015) 191–198.
  • [31] S. Cano-Andrade, G. P. Beretta, M. R. von Spakovsky, Non-equilibrium thermodynamic modeling of an atom-field state evolution with comparisons to published experimental data, in: Proceedings of the 12th Joint European Thermodynamics Conference, Brescia, Italy, 2013, pp. 1–5.
  • [32] S. Sanaye, M. Dehghandokht, Thermal modeling of mini-channel and laminated types evaporator in mobile air conditioning system, International Journal of Automotive Engineering 2 (2) (2012) 68–83.
  • [33] B. Salman, H. Mohammed, K. Munisamy, A. S. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review, Renewable and Sustainable Energy Reviews 28 (2013) 848–880.
  • [34] P. Ziółkowski, J. Badur, Navier number and transition to turbulence, in: Journal of Physics: Conference Series, Vol. 530, IOP Publishing, 2014, p. 012035.
  • [35] S. Alfarawi, R. Al-Dadah, S. Mahmoud, Transient investigation of minichannel regenerative heat exchangers: Combined experimental and cfd approach, Applied Thermal Engineering 125 (2017) 346–358.
  • [36] P. Ziółkowski, J. Badur, On the unsteady reynolds thermal transpiration law, in: Journal of Physics: Conference Series, Vol. 760, IOP Publishing, 2016, p. 012041.
  • [37] M. T. Mabrouk, A. Kheiri, M. Feidt, Using generalized integral transforms to solve a perturbation model for a packed bed thermal energy storage tank, International Journal of Heat and Mass Transfer 84 (2015) 633–641.
  • [38] J. Badur, P. Ziółkowski, D. Sławiński, S. Kornet, An approach for estimation of water wall degradation within pulverized-coal boilers, Energy 92 (2015) 142–152.
  • [39] J. Badur, P. Ziolkowski, S. Kornet, M. Stajnke, M. Bryk, K. Banas, P. Ziolkowski, The effort of the steam turbine caused by a flood wave load, in: AIP Conference Proceedings, Vol. 1822, AIP Publishing, 2017, p. 020001.
  • [40] A. E. Quintero, M. Vera, Laminar counterflow parallel-plate heat exchangers: An exact solution including axial and transverse wall conduction effects, International Journal of Heat and Mass Transfer 104 (2017) 1229–1245.
  • [41] D. Taler, P. Ocłoń, Thermal contact resistance in plate fin-and-tube heat exchangers, determined by experimental data and cfd simulations, International Journal of Thermal Sciences 84 (2014) 309–322.
  • [42] X. Liu, J. Yu, Numerical study on performances of mini-channel heat sinks with non-uniform inlets, Applied Thermal Engineering 93 (2016) 856–864.
  • [43] O. Giurgiu, A. Plęsa, L. Socaciu, Plate heat exchangers–flow analysis through mini channels, Energy Procedia 85 (2016) 244–251.
  • [44] P. Madejski, D. Taler, Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation, Energy conversion and management 71 (2013) 131–137.
  • [45] J. Fu, L. Wei, N. Li, Q. Zhou, T. Liu, Experimental study on temperature, heat flux, strain and stress distribution of boiler water walls, Applied Thermal Engineering 113 (2017) 419–425.
  • [46] Y. Rouizi, W. Al Hadad, D. Maillet, Y. Jannot, Experimental assessment of the fluid bulk temperature profile in a mini channel through inversion of external surface temperature measurements, International Journal of Heat and Mass Transfer 83 (2015) 522–535.
  • [47] M. Costea, M. Feidt, The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a stirling engine, Energy conversion and management 39 (16) (1998) 1753–1761.
  • [48] J. Taler, P. Duda, B. Węglowski, W. Zima, S. Grądziel, T. Sobota, D. Taler, Identification of local heat flux to membrane water-walls in steam boilers, Fuel 88 (2) (2009) 305–311.
  • [49] M. Banaszkiewicz, On-line monitoring and control of thermal stresses in steam turbine rotors, Applied Thermal Engineering 94 (2016) 763–776.
  • [50] J. Taler, B. Węglowski, P. Dzierwa, P. Czupryński, P. Madejski, D. Nabagło, C. Zyrkowski, Analysis to speed up of the start-up of steam boiler op-380, Journal of Power Technologies 94 (2) (2014) 1–8.
  • [51] J. Felicjancik, P. Ziółkowski, J. Badur, An advanced thermal-fsi approach of an evaporation of air heat pump, Transactions of the Institute of Fluid-Flow Machinery (129) (2015) 111–141.
  • [52] B. D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis 13 (1) (1963) 167–178.
  • [53] C. Truesdell, Rational Thermodynamics, 2nd ed., Springer-Verlag, 1984.
  • [54] V. Eremeyev, W. Pietraszkiewicz, Thermomechanics of shells undergoing phase transition, Journal of the Mechanics and Physics of Solids 59 (7) (2011) 1395–1412.
  • [55] J. Badur, S. Kornet, D. Sławiński, P. Ziółkowski, M. Banaszkiewicz, A. Rehmus-Forc, Numerical analysis of cracking hazard of a thermowell for measuring steam temperature in a steam turbine control stage, Journal of Power Technologies 96 (6) (2016) 361–367.
  • [56] S. Kornet, D. Sławiński, P. Ziółkowski, J. Badur, Analysis of unsteady flow forces on the thermowell of steam temperature sensor, Transactions of the Institute of Fluid-Flow Machinery.
  • [57] D. C. Wilcox, et al., Turbulence modeling for CFD, Vol. 2, DCW industries La Canada, CA, 1998.
  • [58] J. Badur, Numerical modeling of sustainable combustion in gas turbines, IFFM PAS, Gda´nsk.
  • [59] J. B. J. Baron Fourier, The analytical theory of heat, The University Press, 1878.
  • [60] A. Bejan, Entropy generation minimization, CRC, 1996.
  • [61] M. Blaise, M. Feidt, D. Maillet, Optimization of the changing phase fluid in a carnot type engine for the recovery of a given waste heat source, Entropy 17 (8) (2015) 5503–5521.
  • [62] J. Taler, B. Węglowski, D. Taler, M. Trojan, T. Sobota, P. Dzierwa, M. Pilarczyk, P. Madejski, D. Nabagło, Method of determination of thermowell parameters for steam boiler, Journal of Power Technologies 95 (4) (2015) 309–316.
  • [63] M. Feidt, Thermodynamics of energy systems and processes: A review and perspectives, J. Appl. Fluid Mech 5 (2) (2012) 85–98.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fab319d-2a5b-4d25-bf3f-9dcda18bccfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.