PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quasistatic deformation analysis of melt‑based molded die‑cast open‑cell aluminum alloy foam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The metal foams behavior significantly depends on the method applied for its manufacturing. Present work investigates the mechanical quasistatic three-point and compressive deformation behavior of molded die-cast open-cell Aluminum Alloy foam (OCAF). Different span lengths and loading velocities were selected for the experimentation. The deformation behavior of the OCAF was studied and the effect was correlated with different theories available for foam deformation. The plastic behavior of OCAF was also studied using a compression loading-unloading experiment at different stress and strain values. Microstructural study and phase analysis were carried out at the cell wall surfaces using fractography to establish the cause of brittle failure dominant in the foam. Further, micro-CT analysis was used to study the cell deformation in the bulk material and the role of micropores and macro-pores.
Rocznik
Strony
art. no. e24, 2023
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Kharagpur 721302, India
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Kharagpur 721302, India
autor
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Kharagpur 721302, India
Bibliografia
  • 1. Ashby MF, Evans T, Fleck NA, Hutchinson JW, Wadley HN, Gibson LJ. Metal foams: a design guide. Amsterdam: Elsevier; 2000.
  • 2. Gibson LJ. Mechanical behavior of metallic foams. Annu Rev Mater Sci. 2000;30:191-227.
  • 3. Lu TJ, Stone HA, Ashby MF. Heat transfer in open-cell metal foams. Acta Mater. 1998;46(10):3619-35. https://doi.org/10.1016/S1359-6454(98)00031-7.
  • 4. Albertelli P, Esposito S, Mussi V, Goletti M, Monno M. Effect of metal foam on vibration damping and its modelling. Int J Adv Manuf Technol. 2021;117(7):2349-58. https://doi.org/10.1007/s00170-021-07172-6.
  • 5. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med. 2002;13(4):397-401. https://doi.org/10.1023/A:1014344819558.
  • 6. Salvini VR, Luchini B, Aneziris CG, Pandolfelli VC. Innovation in ceramic foam filters manufacturing process. Int J Appl Ceram Technol. 2019;16(1):378-88. https://doi.org/10.1111/ijac.13062.
  • 7. Wadley HN. Cellular metals manufacturing. Adv Eng Mater. 2002;4(10):726-33. https://doi.org/10.1002/1527-2648(20021014)4:10%3c726:: AID-ADEM726%3e3.0.CO;2-Y.
  • 8. Azzi WE. A systematic study on the mechanical and thermal properties of open cell metal foams for aerospace applications. 2004. http://www.lib.ncsu.edu/resolver/1840.16/2922.
  • 9. Salimon A, Brechet Y, Ashby MF, Greer AL. Potential applications for steel and titanium metal foams. J Mater Sci. 2005;40(22):5793-9. https://doi.org/10.1007/s10853-005-4993-x.
  • 10. Chen S, Bourham M, Rabiei A. Applications of open-cell and closed-cell metal foams for radiation shielding. Procedia Mater Sci. 2014;4:293-8. https://doi.org/10.1016/j.mspro.2014.07.560.
  • 11. Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559-632. https://doi.org/10.1016/S0079-6425(00)00002-5.
  • 12. Wan T, Liu Y, Zhou C, Chen X, Li Y. Fabrication, properties, and applications of open-cell aluminum foams: a review. J Mater Sci Technol. 2021;62:11-24. https://doi.org/10.1016/j.jmst.2020.05.039.
  • 13. Andrews E, Sanders W, Gibson LJ. Compressive and tensile behavior of aluminum foams. Mater Sci Eng A. 1999;270:113-24. https://doi.org/10.1016/S0921-5093(99)00170-7.
  • 14. Zhou J, Shrotriya P, Soboyejo WO. Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech Mater. 2004;36:781-97. https://doi.org/10.1016/j.mechmat.2003.05.004.
  • 15. Zhou J, Mercer C, Soboyejo WO. An investigation of the microstructure and strength of open-cell 6101 aluminum foams. Metall Mater Trans A. 2002;33:1413-27. https://doi.org/10.1007/s11661-002-0065-x.
  • 16. Wang Z, Gao J, Chang K, Meng L, Zhang N, Guo Z. Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties. RSC Adv. 2018;8:15933-9. https://doi.org/10.1039/C7RA13689G.
  • 17. Cetinel O, Esen Z, Yildirim B. Fabrication, morphology analysis, and mechanical properties of Ti foams manufactured using the space holder method for bone substitute materials. Met. 2019;9(3):340. https://doi.org/10.3390/met9030340.
  • 18. Aida SF, Hijrah MN, Amirah AH, Zuhailawati H, Anasyida AS. Effect of NaCl as a space holder in producing open cell A356 aluminum foam by gravity die casting process. Procedia Chem. 2016;19:234-40. https://doi.org/10.1016/j.proche.2016.03.099.
  • 19 Shunmugasamy VC, Mansoor B. Compressive behavior of a rolled open-cell aluminum foam. Mater Sci Eng A. 2018;715:281-94. https://doi.org/10.1016/j.msea.2018.01.015.
  • 20. Jiang B, Zhao NQ, Shi CS, Du XW, Li JJ, Man HC. A novel method for making open cell aluminum foams by powder sintering process. Mater Lett. 2005;59:3333-6. https://doi.org/10.1016/j.matlet.2005.05.068.
  • 21. Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater. 2003;49:1197-202. https://doi.org/10.1016/j.scriptamat.2003.08.018.
  • 22. Sharma V, Grujovic N, Zivic F, Slavkovic V. Influence of porosity on the mechanical behavior during uniaxial compressive testing on voronoi-based open-cell aluminum foam. Materials. 2019;12(7):1041. https://doi.org/10.3390/ma12071041.
  • 23. Wang X, Huang Y, Wang X, Wang W, Hao G, Wang D. Effect of pore density on the compressive response of open-cell Al foams. Mater Sci Technol. 2022;26:1-9. https://doi.org/10.1080/02670836.2022.2065728.
  • 24. San Marchi C, Despois JF, Mortensen A. Uniaxial deformation of open-cell aluminum foam: the role of internal damage. Acta Mater. 2004;52:2895-902. https://doi.org/10.1016/j.actamat.2004.02.035.
  • 25. Amsterdam E, Onck PR, De Hosson JTM. Fracture and microstructure of open cell aluminum foam. J Mater Sci. 2005;40:5813-9. https://doi.org/10.1007/s10853-005-4995-8.
  • 26. Wang Z, Ma H, Zhao L, Yang G. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scr Mater. 2006;54:83-7. https://doi.org/10.1016/j.scriptamat.2005.09.008.
  • 27. Ni Y, Liao H, Zhao Q, Wu W, Shi Y, Wu S. Investigations of the failure behaviors of open-cell copper foam based on in-situ X-ray tomography compression experiments and image reconstructed finite element modeling. Eng Fract Mech. 2022;263:108323. https://doi.org/10.1016/j.engfracmech.2022.108323.
  • 28. Deshpande VS, Fleck NA. High strain rate compressive behavior of aluminum alloy foams. Int J Impact Eng. 2000;24(3):277-98. https://doi.org/10.1016/S0734-743X(99)00153-0.
  • 29. Lindholm US, Bessey RL, Smith GV. Effect of strain rate on yield strength, tensile strength and elongation of three aluminum alloys. J Mater. 1971;6(1):119-33.
  • 30. Kanahashi H, Mukai T, Yamada Y, Shimojima K, Mabuchi M, Nieh TG, Higashi K. Dynamic compression of an ultra-low density aluminum foam. Mater Sci Eng A. 2000;280(2):349-53. https://doi.org/10.1016/S0921-5093(99)00704-2.
  • 31. Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K. Compressive properties of open-cellular SG91A Al and AZ91 Mg. Mater Sci Eng A. 1999;272(2):455-8. https://doi.org/10.1016/S0921-5093(99)00484-0.
  • 32. Mukai T, Kanahashi H, Miyoshi T, Mabuchi M, Nieh TG, Higashi K. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scr Mater. 1999;40(8):921-7. https://doi.org/10.1016/S1359-6462(99)00038-X.
  • 33. Calladine CR, English RW. Strain-rate and inertia effects in the collapse of two types of energy absorbing structure. Int J Mech Sci. 1984;26(11/12):689-701. https://doi.org/10.1016/0020-7403(84)90021-3.
  • 34. Marker MCJ, Skolyszewska-Kuhberger B, Effenberger HS, Schmetterer C, Richter KW. Phase equilibria and structural investigations in the system Al-Fe-Si. Intermet. 2011;19:1919-29. https://doi.org/10.1016/j.intermet.2011.05.003.
  • 35. Raza MS, Datta S, Saha P. Micro-mechanical and X-Ray micro-computed tomographical analysis of quasistatic three-point loading behavior of closed-cell aluminum foam with and without epoxy-bonded aluminum face-sheet. Mater Sci Eng A. 2021;809:140907. https://doi.org/10.1016/j.msea.2021.140907.
  • 36. Novak P, Zelinkova M, Serak J, Michalcova A, Novak M, Vojt D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermet. 2011;19(9):1306-12. https://doi.org/10.1016/j.inter met.2011.04.011.
  • 37. Mirbagheri S, Khajehali MJ (2014) The effect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, part I : Al-composite foam compression response. Iran J Mater Form 1(1):32-45. https://doi.org/10.22099/IJMF.2014.2487.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5faa7358-5aad-4361-bba3-42fec4acdec8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.