PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trends and mechanisms in agricultural mulch film microplastic pollution: a critical review. Review article

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study systematically reviews the formation, migration, and effects of mulch film-derived microplastics on soil ecosystems, as well as the combined effects of microplastics and pesticides. This review highlights that mulch film microplastics affect plant growth by altering soil properties, nitrogen metabolism, and photosynthesis. Additionally, microplastics have negative effects on animal growth, behavior, reproduction, and tissue integrity, with potential health risks to humans through food chain contamination. The migration of microplastics in soil is influenced by biotic and abiotic processes, that common soil organisms accelerate the dispersal of microplastics through bioturbation. The interaction between microplastics and pesticides was evaluated, revealing potential risks of enhanced soil pollution through changes in pesticide adsorption, degradation, and transport. Future research should prioritize the development of biodegradable mulch films, improvements in microplastic degradation technologies, and investigations into the environmental behavior of microplastics in soil to mitigate their ecological impacts and support sustainable agricultural practices.
Słowa kluczowe
Czasopismo
Rocznik
Strony
33--51
Opis fizyczny
Bibliogr. 163 poz., rys., tab., wykr., wz.
Twórcy
  • School of Resources and Environmental Engineering, Shanghai Polytechnic University Shanghai, China
  • Hebei Institute of Product Quality Supervision and Inspection, Shijiazhuang, China
autor
  • School of Resources and Environmental Engineering, Shanghai Polytechnic University Shanghai, China
autor
  • School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Ireland
Bibliografia
  • 1. Dong, B., Liu, M., Jiang, J., Shi, C., Wang, X., Qiao, Y., Si, F. (2014). Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields. Agric. Water Manag., 143, 93–101. DOI: 10.1016/j.agwat.2014.06.011.
  • 2. Ren, S.-Y., Kong, S.-F.,Ni, H.-G. (2021). Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environ. Pollut., 291, 118227. DOI: 10.1016/j. envpol.2021.118227.
  • 3. Liu, E. K., He, W. Q., Yan, C. R. (2014). ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environ. Res. Letters 9 (9), 091001. DOI: 10.1088/1748-9326/9/9/091001.
  • 4. Yang, Y., Li, Z., Yan, C., Chadwick, D., Jones, D. L., Liu, E., He, W. (2022). Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci. of the Total Environ., 814, 152572. DOI: 10.1016/j.scitotenv.2021.152572.
  • 5. Fei, Y. F., Huang, S. Y., Wang, J. Q., Luo, Y. M., Zhang, H. B. (2021). Microplastics contamination in the protected agricultural soils and its effects on bacterial community diversity. Chinese Sci. Bull.-Chin., 66 (13), 1592–1601. DOI: 10.1360/TB-2020-0685.
  • 6. Zhang, X., Chen, Y., Li, X., Zhang, Y., Gao, W., Jiang, J., He, D. (2022). Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Sci. Total Environ., 815, 152507. DOI: 10.1016/j.scitotenv.2021.152507.
  • 7. Qi, Y. L., Yang, X. M., Pelaez, A. M., Lwanga, E. H., Beriot, N., Gertsen, H., Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056. 10.1016/j.scitotenv.2018.07.229.
  • 8. Jiang, X. J., Liu, W., Wang, E., Zhou, T., Xin, P. (2017). Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil and Tillage Res., 166, 100–107. DOI: 10.1016/j. still.2016.10.011.
  • 9. Dong, P., Xiong, F., Que, Y., Wang, K., Yu, L., Li, Z., Ren, M. (2015). Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci, 6, 677. DOI: 10.3389/fpls.2015.00677.
  • 10. Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B., Li, Z. (2019). Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Science of the Total Environment, 651, 484–492. DOI: 10.1016/j.scitotenv.2018.09.105.
  • 11. Li, N.-y., Qu, J.-h.,Yang, J.-y. (2023). Microplastics distribution and microbial community characteristics of farmland soil under different mulch methods. J. Hazard. Mat., 445, 130408. DOI: 10.1016/j.jhazmat.2022.130408.
  • 12. Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., Qin, X. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut., 254, 112983. DOI: 10.1016/j.envpol.2019.112983.
  • 13. Wu, C., Ma, Y., Wang, D., Shan, Y., Song, X., Hu, H., Ma, Y. (2022). Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. J. Hazard. Mat., 423, 127258. DOI: 10.1016/j.jhazmat.2021.127258.
  • 14. Qi, Y., Ossowicki, A., Yergeau, É., Vigani, G., Geissen, V., Garbeva, P. (2022). Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiol. Ecol., 98 (2), fiac017. DOI: 10.1093/femsec/fiac017.
  • 15. Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., Akan, O. D. (2022). Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Res. Conserv. Rec., 177, 105961. DOI: 10.1016/j. resconrec.2021.105961.
  • 16. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröeger, J., Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ., 550, 690–705. DOI: 10.1016/j.scitotenv.2016.01.153.
  • 17. Madrid, B., Wortman, S., Hayes, D. G., DeBruyn, J. M., Miles, C., Flury, M., De Vetter, L. W. (2022). End-of-Life Management Options for Agricultural Mulch Films in the United States—A Review. Frontiers in Sustainable Food Systems, 6. DOI: 10.3389/fsufs.2022.921496.
  • 18. Serrano-Ruiz, H., Martin-Closas, L., Pelacho, A. M. (2021). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ., 750, 141228. DOI: 10.1016/j. scitotenv.2020.141228.
  • 19. Luyt, A. S., Malik, S. S. (2019). 16 - Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation? In S. M. Al-Salem (Ed.), Plastics to Energy (pp. 403–423). William Andrew Publishing. DOI: 10.1016/B978-0-12-813140-4.00016-9.
  • 20. Liu, L. Y., Zou, G. Y., Zuo, Q., Li, S. J., Bao, Z., Jin, T., Du, L. F. (2022). It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. & Innovat., 27, 102487. DOI: 10.1016/j.eti.2022.102487.
  • 21. Zhou, J., Jia, R., Brown, R. W., Yang, Y. D., Zeng, Z. H., Jones, D. L., Zang, H. D. (2023). The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. J. Hazard. Mat., 442, 130055. DOI: 10.1016/j.jhazmat.2022.130055.
  • 22. Claudia, C., Silvia, G., Francesca, D. P., Iulian, P., Carmine, M., Vito, F. U. (2024) A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. TrAC Trends Anal. Chem., 170, 117391. DOI: 10.1016/j.trac.2023.117391.
  • 23. H. M. S. Government. (2018). A Green Future: Our 25 Year Plan to Improve the Environment, sets out what we will do to improve the environment, within a generation. https://www.gov.uk/government/publications/25-year-environment-plan.
  • 24. E. Commission. (2018). Single-use plastics: New EU rules to reduce marine litter. https://ec.europa.eu/commission/presscorner/detail/en/ip_18_3927.
  • 25. K. ClarivateE. Corporation. (2018). Sub Act on the Promotion of Saving and Recycling of Resources. https://www.law.go.kr/lsInfoP.do?lsiSeq=206534&viewCls=lsRvsDocInfoR#.
  • 26. AQSIQ, SAC. (2018). Polyethylene blown mulch film for agricultural uses. https://openstd.samr.gov.cn/bzgk/std/newGbInfo?hcno=35C143A081197B76BAAE059A52852DC3.
  • 27. Clarivate. (2024). Journal Citation Reports. https://jcr.clarivate.com/.
  • 28. Zhou, J., Jia, R., Brown, R. W., Yang, Y. D., Zeng, Z. H., Jones, D. L., Zang, H. D. (2023). The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. J. Hazard. Mat., 442, 130055. DOI: 10.1016/j.jhazmat.2022.130055.
  • 29. Brown, R. W., Chadwick, D. R., Zang, H. D., Graf, M., Liu, X. J., Wang, K., Jones, D. L. (2023). Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize. J. Hazard. Mat., 441, 129959. DOI: 10.1016/j.jhazmat.2022.129959.
  • 30. Bhandari, G., Atreya, K., Scheepers, P. T. J., Geissen, V. (2020). Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere, 253, 126594. DOI: 10.1016/j.chemosphere.2020.126594.
  • 31. Lwanga, E. H., Beriot, N., Corradini, F., Silva, V., Yang, X. M., Baartman, J., Geissen, V. (2022). Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chem. Biol. Technol. Agric., 9 (1), 20. DOI: 10.1186/s40538-021-00278-931.
  • 32. Qi, R., Jones, D. L., Li, Z., Liu, Q.,Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ., 703, 134722. DOI: 10.1016/j.scitotenv.2019.134722.
  • 33. Li, S., Ding, F., Flury, M., Wang, Z., Xu, L., Li, S., Wang, J. (2022). Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut., 300, 118945. DOI : 10.1016/j.envpol.2022.118945.
  • 34. Zhou, J., Wen, Y., Marshall, M. R., Zhao, J., Gui, H., Yang, Y., Zang, H. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total Environ., 787, 147444. DOI: 10.1016/j.scitotenv.2021.147444.
  • 35. Chen, Y. S., Wu, C. F., Zhang, H. B., Lin, Q. Y., Hong, Y. W., Luo, Y. M. (2013). Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environ. Earth Sci., 70 (1), 239–247. DOI: 10.1007/s12665-012-2119-8.
  • 36. Wang, J., Lv, S., Zhang, M., Chen, G., Zhu, T., Zhang, S., Luo, Y. (2016). Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 151, 171–177. DOI: 10.1016/j.chemosphere.2016.02.076.
  • 37. Ma, T. T., Wu, L. H., Chen, L., Zhang, H. B., Teng, Y., Luo, Y. M. (2015). Phthalate esters contamination in soils and vegetables of plastic film greenhouses of suburb Nanjing, China and the potential human health risk. Environ. Sci. Pollut. Res., 22 (16), 12018-12028. DOI: 10.1007/s11356-015-4401-2.
  • 38. Qi, Y. L., Beriot, N., Gort, G., Lwanga, E. H., Gooren, H., Yang, X. M., Geissen, V. (2020). Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut., 266, 115097. DOI : 10.1016/j.envpol.2020.115097.
  • 39. Qi, Y. L., Ossowicki, A., Yang, X. M., Lwanga, E. H., Dini-Andreote, F., Geissen, V.,Garbeva, P. (2020). Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mat., 387, 121711. DOI: 10.1016/j.jhazmat.2019.121711.
  • 40. Xue, Y., Li, J., Jin, T., Liu, D., Zou, G., Li, F., Xu, L. (2023). Meso- and microplastic contamination in mulching cultivated soil at a national scale, China. J. Cleaner Prod., 418, 138215. DOI: 10.1016/j.jclepro.2023.138215.
  • 41. Wang, X. X., Qiao, D., Chen, Y. H., Zou, G. Y., Liu, B. Y., Zhang, J. J., Liu, B. S. (2022). Effects of long-term film mulching on the characterstics of soil residual film in topsoil layer of maize planted in northern China. Fres. Envieon. Bull., 31 (3), 2881–2888.
  • 42. Zhang, J. J., Zou, G. Y., Wang, X. X., Ding, W. C., Xu, L., Liu, B. Y., Chen, Y. H. (2021). Exploring the occurrence characteristics of microplastics in typical maize farmland soils with long-term plastic film mulching in northern China. Fronti. Marine Sci., 8, 800087. DOI: 10.3389/fmars.2021.800087.
  • 43. Ding, L., Wang, X., Ouyang, Z., Chen, Y., Wang, X., Liu, D., Guo, X. (2021). The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years. J. Hazard. Mat., 403, 123982. DOI: 10.1016/j.jhazmat.2020.123982.
  • 44. Sintim, H. Y., Flury, M. (2017). Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. & Technol., 51 (3), 1068–1069. DOI: 10.1021/acs.est.6b06042.
  • 45. Ghimire, S., Flury, M., Scheenstra, E. J., Miles, C. A. (2020). Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci. of the Total Environ., 703, 135577. DOI: 10.1016/j.scitotenv.2019.135577.
  • 46. Sintim, H. Y., Bandopadhyay, S., English, M. E., Bary, A. I., DeBruyn, J. M., Schaeffer, S. M., Flury, M. (2019). Impacts of biodegradable plastic mulches on soil health. Agr., Ecosys. & Environ., 273, 36–49. DOI: 10.1016/j.agee.2018.12.002.
  • 47. Hayes, D. G., Wadsworth, L. C., Sintim, H. Y., Flury, M., English, M., Schaeffer, S., Saxton, A. M. (2017). Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polymer Testing, 62, 454–467. DOI: 10.1016/j.polymertesting.2017.07.027.
  • 48. Saglam, M., Sintim, H. Y., Bary, A. I., Miles, C. A., Ghimire, S., Inglis, D. A., Flury, M. (2017). Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Managem., 193, 240–250. DOI: 10.1016/j. agwat.2017.08.011.
  • 49. Ghimire, S., Wszelaki, A., Moore, J., Sintim, H., Inglis, D. A., Flury, M., Miles, C. (2016). Biodegradable Plastic Mulch Provided Weed Control, Yield, and Quality of Pie Pumpkin Comparable to Polyethylene Mulch. Hortscience, 51 (9), S275–S275.
  • 50. Li, K., Jia, W., Xu, L., Zhang, M., Huang, Y. (2023). The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. J. Hazard. Mat., 442, 130011. DOI: 10.1016/j.jhazmat.2022.130011.
  • 51. Li, K., Zhang, M., Jia, W., Xu, L., Huang, Y. (2023). Deciphering the effects of LDPE microplastic films on diversity, composition and co-occurrence network of soil fungal community. Applied Soil Ecology, 182, 104716. 10.1016/j. apsoil.2022.104716.
  • 52. Li, K., Xu, L., Bai, X., Zhang, G., Zhang, M., Huang, Y. (2024a). Differential fungal assemblages and functions between the plastisphere of biodegradable and conventional microplastics in farmland. Sci. Total Environ., 906, 167478. DOI: 10.1016/j.scitotenv.2023.167478.
  • 53. Li, K., Xu, L., Bai, X., Zhang, G., Zhang, M., Huang, Y. (2024b). Potential environmental risks of field bio/non-degradable microplastic from mulching residues in farmland: Evidence from metagenomic analysis of plastisphere. J. Hazard. Mat., 465, 133428. DOI: 10.1016/j.jhazmat.2024.133428.
  • 54. Liu, Y., Rillig, M. C., Liu, Q., Huang, J. J., Khan, M. A., Li, X. H., Huang, Q. (2023). Factors affecting the distribution of microplastics in soils of China. Frontiers of Environ. Sci. & Engin., 17 (9), 110. DOI: 10.1007/s11783-023-1710-4.
  • 55. Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. L. A., Sanchez Del Cid, L., Chi, C., Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep, 7 (1), 14071. DOI: 10.1038/s41598-017-14588-2.
  • 56. Boots, B., Russell, C. W., Green, D. S. (2019a). Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. & Technol., 53 (19), 11496–11506. DOI : 10.1021/acs.est.9b03304.
  • 57. de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Rillig, M. C. (2019). Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. & Technol., 53 (10), 6044–6052. DOI : 10.1021/acs.est.9b01339.
  • 58. Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ., 645, 1048–1056. DOI : 10.1016/j.scitotenv.2018.07.229.
  • 59. Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., Qin, X. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut., 254, 112983. DOI: 10.1016/j.envpol.2019.112983.
  • 60. Liu, E. K., He, W. Q., Yan, C. R. (2014). ‘White revolution’ to ‘white pollution’-agricultural plastic film mulch in China. Environ. Res. Letters, 9 (9), 091001. DOI: 10.1088/1748-9326/9/9/091001.
  • 61. Huang, Y., Liu, Q., Jia, W., Yan, C., Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut., 260, 114096. DOI: 10.1016/j.envpol.2020.114096.
  • 62. Bläsing, M., Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Sci. Total Environ., 612, 422–435. DOI: 10.1016/j.scitotenv.2017.08.086.
  • 63. Zhang, G. S., Liu, Y. F. (2018). The distribution of micro-plastics in soil aggregate fractions in southwestern China. Sci. Total Environ., 642, 12–20. DOI: 10.1016/j.scitotenv.2018.06.004.
  • 64. Astner, A. F., Hayes, D. G., O’Neill, H., Evans, B. R., Pingali, S. V., Urban, V. S., Young, T. M. (2023). Assessment of cryogenic pretreatment for simulating environmental weathering in the formation of surrogate micro- and nanoplastics from agricultural mulch film. Sci. Total Environ., 870, 161867. DOI: 10.1016/j.scitotenv.2023.161867.
  • 65. Astner, A. F., Hayes, D. G., O’Neill, H. M., Evans, B. R., Pingali, S. V., Urban, V. S., Young, T. M. (2022). Forming Micro-and Nano-Plastics from Agricultural Plastic Films for Employment in Fundamental Research Studies. J. Vis. Exp., 185, e64112. DOI: 10.3791/64112.
  • 66. Li, S. T., Ding, F., Flury, M., Wang, Z., Xu, L., Li, S. Y., Wang, J. K. (2022). Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut., 300, 118945. DOI: 10.1016/j.envpol.2022.118945.
  • 67. Xu, Z. X., Hu, C., Wang, X. F., Wang, L., Xing, J. F., He, X. W., Zhao, P. F. (2023). Distribution characteristics of plastic film residue in long-term mulched farmland soil. Soil Ecol. Letters, 5 (3), 220144. DOI: 10.1007/s42832-022-0144-4.
  • 68. Ren, S. Y., Wang, K., Zhang, J. R., Li, J. J., Zhang, H. Y., Qi, R. M., Chadwick, D.R. (2024). Potential sources and occur-rence of macro-plastics and microplastics pollution in farmland soils: A typical case of China. Critical Rev. Environ. Sci. Technol., 54 (7), 533–556. DOI: 10.1080/10643389.2023.2259275.
  • 69. Huang, Y., Liu, Q., Jia, W. Q., Yan, C. R., Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut., 260, 114096. DOI : 10.1016/j.envpol.2020.114096.
  • 70. Jiao, M., Wang, Y., Li, T., Li, R., Liu, B. (2022). Riverine microplastics derived from mulch film in Hainan Island: Occurrence, source and fate. Environ. Pollut., 312, 120093. DOI : 10.1016/j.envpol.2022.120093.
  • 71. Cao, J. H., Gao, X. D., Hu, Q., Li, C. J., Song, X. L., Cai, Y. H., Zhao, X. N. (2023). Distribution characteristics and correlation of macro- and microplastics under long-term plastic mulching in northwest China. Solit. Res., 231, 105738. DOI: 10.1016/j.still.2023.105738.
  • 72. Yu, L., Zhang, J. D., Liu, Y., Chen, L. Y., Tao, S., Liu, W. X. (2021). Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ., 756, 143860. DOI: 10.1016/j. scitotenv.2020.143860.
  • 73. Zhou, Y., Jing, J., Yu, R. Y., Zhao, Y. Z., Gou, Y. X., Zhang, Z. Y., Huang, Y. F. (2023). Microplastics in plateau agricultural areas: Spatial changes reveal their source and distribution characteristics. Environ. Pollut., 319, 121006. DOI: 10.1016/j.envpol.2023.121006.
  • 74. Meng, F. R., Fan, T. L., Yang, X. M., Riksen, M., Xu, M. G., Geissen, V. (2020). Effects of plastic mulching on the accumulation and distribution of macro and micro plastics in soils of two farming systems in Northwest China. PEERJ, 8, e10375. DOI: 10.7717/peerj.10375.
  • 75. Li, W. F., Wufuer, R., Duo, J., Wang, S. Z., Luo, Y. M., Zhang, D. Y., Pan, X. L. (2020). Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci. Total Environ., 749, 141420. DOI: 10.1016/j.scitotenv.2020.141420.
  • 76. Shanmugam, S. D., Praveena, S. M., Wahid, S. A., Liew, J. Y. C. (2024). Occurrence and characteristics of microplastics pollution in tropical agricultural soils in Klang Valley, Malaysia. Environ. Monit. Asess., 196 (2), 144. DOI: 10.1007/s10661-024-12330-w.
  • 77. Chen, L. Y., Yu, L., Li, Y. J., Han, B. J., Zhang, J. D., Tao, S., Liu, W. X. (2023). Status, characteristics, and ecological risks of microplastics in farmland surface soils cultivated with different crops across mainland China. Sci. Total Environ., 897, 165331. DOI: 10.1016/j.scitotenv.2023.165331.
  • 78. Chen, L. Y., Yu, L., Li, Y. J., Han, B. J., Zhang, J. D., Tao, S., Liu, W. X. (2022). Spatial Distributions, Compositional Profiles, Potential Sources, and Intfluencing Factors of Microplastics in Soils from Different Agricultural Farmlands in China: A National Perspective. Environ. Sci. & Technol., 56 (23), 16964–16974. DOI : 10.1021/acs.est.2c07621.
  • 79. Huo, Y. X., Dijkstra, F. A., Possell, M., Singh, B. (2024). Mineralisation and priming effects of a biodegradable plastic mulch film in soils: Influence of soil type, temperature and plastic particle size. Soil Bology. Biochem., 189, 109257. DOI: 10.1016/j.soilbio.2023.109257.
  • 80. She, Y. C., Qi, X., Sun, S. Y., Li, Z. K. (2024). Biodegradable microplastics boost dissimilatory nitrate reduction to ammonium (DNRA) process contributing to ammonium nitrogen retention in farmland soils. J. Cleaner Prod., 438, 140835. DOI: 10.1016/j.jclepro.2024.140835.
  • 81. Huang, F., Zhang, Q., Wang, L., Zhang, C., Zhang, Y. (2023). Are biodegradable mulch films a sustainable solution to microplastic mulch film pollution? A biogeochemical perspective. J. Hazard. Mat., 459, 132024. DOI: 10.1016/j. jhazmat.2023.132024.
  • 82. Yang, C., Gao, X. (2022). Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Sci. Total Environ., 828, 154579. DOI: 10.1016/j. scitotenv.2022.154579.
  • 83. Wang, W. X., Xie, Y. M., Li, H., Dong, H. M., Li, B., Guo, Y. J., Zhou, W. W. (2024). Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional nonbiodegradable and new biodegradable microplastics. Environ. Pollut., 341, 122897. DOI : 10.1016/j.envpol.2023.122897.
  • 84. Wang, L. Y., Ji, X. X., Cheng, Y., Tao, Y. H., Lu, J., Du, J., Wang, H. S. (2022). All-biodegradable soy protein isolate/lignin composite cross-linked by oxidized sucrose as agricultural mulch films for green farming. Internat. J. Biol. Macromol., 223, 120–128. DOI: 10.1016/j.ijbiomac.2022.10.251.
  • 85. Liu, S. W., Jin, R. X., Li, T. H., Yang, S. X., Shen, M. C. (2023). Are biodegradable plastic mulch films an effective way to solve residual mulch film pollution in farmland? Plant and Soil. DOI: 10.1007/s11104-023-06287-x.
  • 86. Zhao, Z., Zhao, K., Zhang, T., Xu, Y., Chen, R., Xue, S., Giessen, V. (2022). Irrigation-facilitated low-density polyethylene microplastic vertical transport along soil profile: An empirical model developed by column experiment. Ecotoxicol. Environ. Safety, 247, 114232. DOI: 10.1016/j.ecoenv.2022.114232.
  • 87. Jiao, M., Wang, Y. J., Li, T. Z., Li, R. L., Liu, B. B. (2022). Riverine microplastics derived from mulch film in Hainan Island: Occurrence, source and fate. Environ. Pollut., 312, 120093. DOI : 10.1016/j.envpol.2022.120093.
  • 88. Tian, X., Yang, M., Guo, Z., Chang, C., Li, J., Guo, Z., Zou, X. (2022). Plastic mulch film induced soil microplastic enrichment and its impact on wind-blown sand and dust. Sci. Total Environ., 813, 152490. DOI: 10.1016/j.scitotenv.2021.152490.
  • 89. Yang, Z., Lü, F., Zhang, H., Wang, W., Xu, X., Shao, L., He, P. (2022). A neglected transport of plastic debris to cities from farmland in remote arid regions. Sci. Total Environ., 807, 150982. DOI: 10.1016/j.scitotenv.2021.150982.
  • 90. Ling, Q., Yang, B., Jiao, J., Ma, X., Zhao, W., Zhang, X. (2023). Response of microplastic occurrence and migration to heavy rainstorm in agricultural catchment on the Loess plateau. J. Hazard. Mat., 460, 132416. DOI: 10.1016/j. jhazmat.2023.132416.
  • 91. Zhou, S., Ai, J., Qiao, J., Sun, H., Jiang, Y., Yin, X. (2023). Effects of neonicotinoid insecticides on transport of non-degradable agricultural film microplastics. Water Res., 236, 119939. DOI: 10.1016/j.watres.2023.119939.
  • 92. Wang, T., Yu, C., Chu, Q., Wang, F., Lan, T., Wang, J. (2020). Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. DOI: 10.1016/j.chemosphere.2019.125491.
  • 93. Lan, T., Wang, T., Cao, F., Yu, C., Chu, Q., Wang, F. (2021). A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films. Ecotoxic. Environ. Safety, 209, 111781. DOI: 10.1016/j.ecoenv.2020.111781.
  • 94. Wu, C., Pan, S., Shan, Y., Ma, Y., Wang, D., Song, X., Ma, Y. (2022). Microplastics mulch film affects the environmental behavior of adsorption and degradation of pesticide residues in soil. Environ. Res., 214, 114133. DOI: 10.1016/j. envres.2022.114133.
  • 95. Du, A., Hu, C., Wang, X., Zhao, Y., Xia, W., Dai, X., Zhang, S. (2024). Experimental Study on the Migration and Distribution of Microplastics in Desert Farmland Soil Under Drip Irrigation. Environ. Toxicol. Chem., n/a(n/a). DOI: 10.1002/etc.5853.
  • 96. Caruso, G. (2019). Microplastics as vectors of contaminants. Marine Pollut. Bull., 146, 921–924. DOI: 10.1016/j. marpolbul.2019.07.052.
  • 97. Xu, Z., Zhang, Y., Lin, L., Wang, L., Sun, W., Liu, C., Wang, Y. (2022). Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents. Sci. Total Environ., 833, 155097. DOI: 10.1016/j. scitotenv.2022.155097.
  • 98. Rillig, M. C., Ziersch, L., Hempel, S. (2017). Microplastic transport in soil by earthworms. Sci. Rep., 7 (1), 1362. DOI: 10.1038/s41598-017-01594-7.
  • 99. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Geissen, V. (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol., 50 (5), 2685–2691. DOI: 10.1021/acs.est.5b05478.
  • 100. Rillig, M. C. (2012). Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol., 46 (12), 6453–6454. DOI: 10.1021/es302011r.
  • 101. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut., 220, 523–531. DOI : 10.1016/j. envpol.2016.09.096.
  • 102. Anderson, J. M. (1988). Invertebrate-mediated transport processes in soils. Agric., Ecosys. Environ., 24 (1), 5–19. DOI: 10.1016/0167-8809(88)90052-7.
  • 103. Maaß, S., Daphi, D., Lehmann, A., Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environ. Pollut., 225, 456–459. DOI: 10.1016/j.envpol.2017.03.009.
  • 104. Zhu, D., Chen, Q.-L., An, X.-L., Yang, X.-R., Christie, P., Ke, X., Zhu, Y.-G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem., 116, 302–310. DOI: 10.1016/j.soilbio.2017.10.027.
  • 105. Guo, J.-J., Huang, X.-P., Xiang, L., Wang, Y.-Z., Li, Y.-W., Li, H., Wong, M.-H. (2020). Source, migration and toxicology of microplastics in soil. Environ. Internat., 137, 105263. DOI: 10.1016/j.envint.2019.105263.
  • 106. Yu, H., Zhang, W., Zheng, L., Li, T., Hai, C., Wangq, Y., Lyu, T. (2024). A review of the migration mechanisms of microplastics in terrestrial environments. Environ. Engin. Res. 29 (5), 230734. DOI: 10.4491/eer.2023.734.
  • 107. Kautz, T., Lüsebrink, M., Pätzold, S., Vetterlein, D., Pude, R., Athmann, M., Köpke, U. (2014). Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia, 57 (1), 47–52. DOI: 10.1016/j. pedobi.2013.09.008.
  • 108. Li, H., Lu, X., Wang, S., Zheng, B., Xu, Y. (2021). Vertical migration of microplastics along soil profile under different crop root systems. Environ. Pollut., 278, 116833. DOI : 10.1016/j.envpol.2021.116833.
  • 109. Zhou, Y., He, G., Ma, S. (2021). Ecological effects of microplastics contamination in soils. Journal of Zhejiang A&F University, 38 (5), 1040. DOI: 10.11833/j.issn.2095-0756.20200729.
  • 110. Chen, G., Wang, W. J.~, W. (2023). Research Progress on the Effects of Microplastics on the Growth and Development of Terrestrial Plants and Rhizosphere Environment. J. Ecology and Rural Environ., 39 (5), 625–633. DOI: 10.19741/j. issn.1673-4831.2023.0193.
  • 111. Mitzel, M. R., Sand, S., Whalen, J. K., Tufenkji, N. (2016). Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Res., 92, 113–120. DOI : 10.1016/j.watres.2016.01.02611.
  • 112. Tripathi, S., Champagne, D.,Tufenkji, N. (2012). Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Environ. Sci. & Technol., 46 (13), 6942–6949. DOI : 10.1021/es202833k.
  • 113. Liu, H., Yue, L., Zhao, Y., Li, J., Fu, Y., Deng, H.,… Ge, C. (2022). Changes in bacterial community structures in soil caused by migration and aging of microplastics. Sci. Total Environ., 848, 157790. DOI: 10.1016/j.scitotenv.2022.157790.
  • 114. Li, Y., Hou, Y., Hou, Q., Long, M., Wang, Z., Rillig, M. C., Yong, T. (2023). Soil microbial community parameters affected by microplastics and other plastic residues. Frontiers in Microbiology, 14, 1258606. DOI: 10.3389/fmicb.2023.1258606.
  • 115. Deng, Y., Zeng, Z., Feng, W., Liu, J., Yang, F. (2024). Characteristics and Migration Dynamics of Microplastics in Agricultural Soils. Agriculture, 14 (1), 157. https://www.mdpi.com/2077-0472/14/1/157.
  • 116. Gao, J., Pan, S., Li, P., Wang, L., Hou, R., Wu, W.-M., Hou, D. (2021). Vertical migration of microplastics in porous media: Multiple controlling factors under wet-dry cycling. J. Hazard. Mat., 419, 126413. DOI: 10.1016/j.jhazmat.2021.126413.
  • 117. Yang, M. N., Tian, X., Guo, Z. L., Chang, C. P., Li, J. F., Guo, Z. X., Zou, X. Y. (2023). Wind erosion induced low-density microplastics migration at landscape scale in a semi-arid region of northern China. Sci. Total Environ., 871, 162068. DOI: 10.1016/j.scitotenv.2023.162068.
  • 118. Wu, S., Chen, Z., Zhou, M., Shao, Y., Jin, C., Tang, J., Schäffer, A. (2022). Freeze-thaw alternations accelerate plasticizers release and pose a risk for exposed organisms. Ecotoxicol. Environ. Safety, 241, 113742. DOI: 10.1016/j.ecoenv.2022.113742.
  • 119. Yu, L., Zhang, J., Liu, Y., Chen, L., Tao, S., Liu, W. (2021). Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ., 756, 143860. DOI: 10.1016/j.scitotenv.2020.143860.
  • 120. Piñon-Colin, T. d. J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., Wakida, F. T. (2020). Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Sci. Total Environ., 704, 135411. DOI: 10.1016/j. scitotenv.2019.135411.
  • 121. Grbić, J., Helm, P., Athey, S., Rochman, C. M. (2020). Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res., 174, 115623. DOI: 10.1016/j.watres.2020.115623.
  • 122. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ., 586, 127–141. DOI: 10.1016/j.scitotenv.2017.01.190.
  • 123. Yang, M. N., Tian, X., Guo, Z. L., Chang, C. P., Li, J. F., Guo, Z. X., Zou, X. Y. (2023). Wind erosion induced low-density microplastics migration at landscape scale in a semi-arid region of northern China. Sci. Total Environ., 871, 162068. DOI: 10.1016/j.scitotenv.2023.162068.
  • 124. Rezaei, M., Riksen, M. J. P. M., Sirjani, E., Sameni, A., Geissen, V. (2019). Wind erosion as a driver for transport of light density microplastics. Sci. Environ. 669, 273–281. DOI: 10.1016/j.scitotenv.2019.02.382.
  • 125. Li, J., Zhu, B., Huang, B., Ma, J., Lu, C., Chi, G., Chen, X. (2023). Vertical distribution and characteristics of soil microplastics under different land use patterns: A case study of Shouguang City, China. Sci. Total Environ., 903, 166154. DOI: 10.1016/j.scitotenv.2023.166154.
  • 126. Xu, T., Chen, H., Xie, D., Tan,, S., Zhang, L., Y., Y. (2024). Research progress on chemical aging microplastics and the adsorption of organic pollutants. Environ. Chem., 43 (11), 3616 – 3628. DOI: 10.7524/j.issn.0254-6108.2023052401.
  • 127. Liu, S, Chen, N., X., Y. (2022). Research Progress on Adsorption-Desorption Characteristics of Organic Pollutants by Microplastics and Their Combined Toxic Effects. Ecol. Environ., 31 (3), 610–620. DOI: 10.16258/j.cnki.1674-5906.2022.03.020.
  • 128. Ren, Z., Gui, X., Wei, Y., Chen, X., Xu, X., Zhao, L., Cao, X. (2021). Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling. Water Res., 202, 117407. DOI: 10.1016/j.watres.2021.117407.
  • 129. Li, K., Du, L., Qin, C., Bolan, N., Wang, H., Wang, H. (2024). Microplastic pollution as an environmental risk exacerbating the greenhouse effect and climate change: a review. Carbon Res., 3 (1), 9. DOI: 10.1007/s44246-023-00097-7.
  • 130. Haque, F., Fan, C. (2023). Fate of microplastics under the influence of climate change. I Science, 26 (9), 107649. DOI: 10.1016/j.isci.2023.107649.
  • 131. Liu, L., Chen, X., Liang, A., Zhang, Y., Huang, D., Li, S., W. H. (2023). Research progress on the mechanisms and influence factors of colloids and microplastic particles migration in agricultural soils. J. Plant Nutrition and Fertilizers, 29 (9), 1713–1724. DOI: 10.11674/zwyf.2022690.
  • 132. Qi, Y., Ossowicki, A., Yang, X., Huerta Lwanga, E., Dini-Andreote, F., Geissen, V., Garbeva, P. (2020). Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mat., 387, 121711. DOI: 10.1016/j. jhazmat.2019.121711.
  • 133. Zhao, Z. Y., Wang, P. Y., Wang, Y. B., Zhou, R., Koskei, K., Munyasya, A. N., Xiong, Y. C. (2021). Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. J. Hazard. Mat., 416, 125954. DOI: 10.1016/j.jhazmat.2021.125954.
  • 134. Liu, B., Li, W., Pan, X., Zhang, D. (2022). The persistently breaking trade-offs of three-decade plastic film mulching: Microplastic pollution, soil degradation and reduced cotton yield. J. Hazard. Mat., 439, 129586. DOI: 10.1016/j. jhazmat.2022.129586.
  • 135. Liu, Y., Huang, Q., Hu, W., Qin, J., Zheng, Y., Wang, J., Xu, L. (2021). Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions. Chemo-sphere, 267, 128901. DOI: 10.1016/j.chemosphere.2020.128901.
  • 136. Boots, B., Russell, C. W., Green, D. S. (2019a). Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. & Technol., 53 (19), 11496–11506. DOI : 10.1021/acs.est.9b03304.
  • 137. Cui, W., Gao, P., Zhang, M., Wang, L., Sun, H., Liu, C. (2022). Adverse effects of microplastics on earthworms: A critical review. Sci. Total Environ., 850, 158041. DOI: 10.1016/j. scitotenv.2022.158041.
  • 138. Jin, Y., Lu, L., Tu, W., Luo, T., Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ., 649, 308–317. DOI: 10.1016/j.scitotenv.2018.08.353.
  • 139. Tian, H., Zheng, C., Huang, X., Qi, C., Li, B., Du, Z., Wang, J. (2024). Effects of farmland residual mulch film-derived microplastics on the structure and function of soil and earthworm Metaphire guillelmi gut microbiota. Sci. Total Environ., 915, 170094. DOI: 10.1016/j.scitotenv.2024.170094.
  • 140. Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut., 250, 831–838. DOI : 10.1016/j.envpol.2019.04.055.
  • 141. Xu, G., Liu, Y., Song, X., Li, M., Yu, Y. (2021). Size effects of microplastics on accumulation and elimination of phenanthrene in earthworms. J. Hazard. Mat., 403, 123966. DOI: 10.1016/j.jhazmat.2020.123966.
  • 142. Yuan, Y., Qin, Y., Wang, M., Xu, W., Chen, Y., Zheng, L., Luo, T. (2022). Microplastics from agricultural plastic mulch films: A mini-review of their impacts on the animal reproductive system. Ecotoxicol. Environ. Safety, 244, 114030. DOI: 10.1016/j.ecoenv.2022.114030.
  • 143. Ijaz, M. U., Shahzadi, S., Samad, A., Ehsan, N., Ahmed, H., Tahir, A., Anwar, H. (2021). Dose-Dependent Effect of Polystyrene Microplastics on the Testicular Tissues of the Male Sprague Dawley Rats. Dose Response, 19 (2), 15593258211019882. DOI : 10.1177/15593258211019882.
  • 144. Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., Megharaj, M. (2022). Chronic and transgenerational effects of polyethylene microplastics at environmentally relevant concentrations in earthworms. Environ. Technol. & Innov., 25, 102226. DOI: 10.1016/j.eti.2021.102226.
  • 145. Auguet, T., Bertran, L., Barrientos-Riosalido, A., Fabregat, B., Villar, B., Aguilar, C., Sabench, F. (2022). Are Ingested or Inhaled Microplastics Involved in Nonalcoholic Fatty Liver Disease? Internat. J. Environ. Res. Public Health, 19 (20). DOI: 10.3390/ijerph192013495.
  • 146. Visalli, G., Facciolà, A., Pruiti Ciarello, M., De Marco, G., Maisano, M., Di Pietro, A. (2021). Acute and Sub-Chronic Effects of Microplastics (3 and 10 μm) on the Human Intestinal Cells HT-29. Internat. J. Environ. Res. Public Health, 18 (11), 5833; DOI: 10.3390/ijerph18115833.
  • 147. Goodman, K. E., Hua, T., Sang, Q.-X. A. (2022). Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS Omega, 7 (38), 34136–34153. DOI: 10.1021/acsomega.2c03453.
  • 148. Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Sci. Total Environ., 757, 143872. DOI: 10.1016/j.scitotenv.2020.143872.
  • 149. Hore, M., Bhattacharyya, S., Roy, S., Sarkar, D., Biswas, J. K. (2024). Human Exposure to Dietary Microplastics and Health Risk: A Comprehensive Review. Reviews of Environmental Contamination and Toxicology, 262 (1), 14. DOI: 10.1007/s44169-024-00066-0.
  • 150. Yi, M. L., Zhou, S. H., Zhang, L. L., Ding, S. Y. (2021). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ. Res., 93 (1), 24–32. DOI: 10.1002/wer.1327.
  • 151. Zhang, M., Zhao, Y., Qin, X., Jia, W., Chai, L., Huang, M., Huang, Y. (2019). Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci. Total Environ., 688, 470–478. DOI: 10.1016/j.scitotenv.2019.06.108.
  • 152. McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., Kelly, J. J. (2014). Microplastic is an Abundant and Distinct Microbial Habitat in an Urban River. Environ Sci & Technol., 48 (20), 11863–11871. DOI: 10.1021/es503610r.
  • 153. Oberbeckmann, S., Labrenz, M. (2020). Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation. Ann. Rev. Mar. Sci., 12, 209–232. DOI: 10.1146/annurev-marine-010419-010633.
  • 154. Qiang, L., Cheng, J., Mirzoyan, S., Kerkhof, L. J., Häggblom, M. M. (2021). Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient. Environ. Sci. & Technol., 55 (24), 16402–16412. DOI : 10.1021/acs.est.1c04108.
  • 155. Oberbeckmann, S., Löder, M. G. J., Labrenz, M. (2015). Marine microplastic-associated biofilms - a review. Environ. Chem., 12, 551–562.
  • 156. de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., Rillig, M. C. (2018). Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. & Technol., 52 (17), 9656–9665. DOI : 10.1021/acs.est.8b02212.
  • 157. Liu, X., Wei, W., Liu, G., Zhu, B., Cui, J., Yin, T. (2024). Effects of Conventional Non-Biodegradable Film- Derived Microplastics and New Biodegradable Film-Derived Microplastics on Soil Properties and Microorganisms after Entering Sub-Surface Soil. Agronomy, 14 (4), 753. DOI: 10.3390/agronomy14040753.
  • 158. Xing, J., Wang, X., Hu, C., Wang, L., Xu, Z., He, X., Liu, Q. (2022). Effects of residual mulching films with different mulching years on the diversity of soil microbial communities in typical regions. Heliyon, 8 (12), e12180. DOI: 10.1016/j. heliyon.2022.e12180.
  • 159. Yang, Y., Liu, W., Zhang, Z., Grossart, H.-P., Gadd, G. M. (2020). Microplastics provide new microbial niches in aquatic environments. Appl. Microbiol. Biotechnol., 104 (15), 6501–6511. DOI : 10.1007/s00253-020-10704-x.
  • 160. Li, G., Tang, Y., Son, Y., Zhao, X., Iqbal, B., Khan, K. Y., Du, D. (2024). Divergent responses in microbial metabolic limitations and carbon use efficiency to variably sized polystyrene microplastics in soil. Land Degrad. Develop., 35 (7), 2658–2671. DOI: 10.1002/ldr.5090.
  • 161. Li, R., Liu, Y., Sheng, Y., Xiang, Q., Zhou, Y., Cizdziel, J. V. (2020). Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ. Pollut., 260, 113988. DOI: 10.1016/j.envpol.2020.113988.
  • 162. Bao, X., Gu, Y., Chen, L., Wang, Z., Pan, H., Huang, S., Chen, X. (2024). Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. Sci. Total Environ., 924, 171472. DOI: 10.1016/j. scitotenv.2024.171472.
  • 163. Cheng, Y., Zhu, L., Song, W., Jiang, C., Li, B., Du, Z., Zhang, K. (2020). Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida). Sci.Total Environ., 746, 141280. DOI: 10.1016/j.scitotenv.2020.141280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fa12d30-7d4e-4566-95e0-b9d766739b42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.