PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of selected brushing process parameters on the tool's operating time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article concerns the possibility of carrying out an optimization process of the extending the life of a brush tool which is use during the process of removing burrs and rounding edges. The work focused on the influence of selected parameters on the wear time of tools. A number of tests were carried out to optimize the selection of parameters in terms of tool life, while maintaining the proper quality of the manufactured products, which translates into their reliability. As part of the work carried out, an optimal set of parameters was prepared to extend the tool's operational time. These parameters are the rotational speed of 1400 rpm and the external diameter of the tool of 200 mm. Thanks to the use of new parameters of the brushing process, the tool's operational time was extended by about 67%.The work car-ried out, after verification as part of large-scale production, led to a reduction in the consumption of tools, which had a positive impact on the improvement of the company's financial result (reduction of cost per part) and also contributed to the reduction of the carbon footprint. The work indicates further areas for development.
Słowa kluczowe
Rocznik
Strony
61--69
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Safran Aircraft Engines Poland, Południowa 23, 39-120 Sędziszów Małopolski, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Safran Aircraft Engines Poland, Południowa 23, 39-120 Sędziszów Małopolski, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Bałon P, Świątoniowski A, Rejman E, Kiełbasa B, Smusz R, Szostak J, Cieślik J. Zastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie projektu SAT-AM. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika. 2020;92(300): 5–17. https://doi.org/10.7862/rm.2020.01
  • 2. Wen-Hsien T, Yao-Chung Ch, Sin-Jin L, Hui-Chiao Ch, Po-Yuan Ch. A green approach to the weight reduction of aircraft cabins. Journal of Air Transport Management. 2014;40: 65–77. https://doi.org/10.1016/j.jairtraman.2014.06.004
  • 3. da Silva A, Jorge M, Ogashawara O. Weight reduction of amorphous alloy core electrical transformers for aircraft applications. In 2016 In-ternational Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC); 1–4: IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841347
  • 4. Zeng Y, Li J, Lin S, He X, Li B, Deng T. Comparison of Manual Setting Weight Reduction and Topology Optimization of the Wing Tips of Electric Vertical Take-Off and Landing Aircraft. Applied Sci-ences. 2022;12(11): 5548. https://doi.org/10.3390/app12115548
  • 5. Yang S, Ordonez J. C. Aircraft Weight Reduction and Onboard Combined Power Cycle Efficiency Improvement-An Integrative Ap-proach. In AIAA Aviation 2019 Forum 3470: Published Online 14 Jun 2019. https://doi.org/10.2514/6.2019-3470
  • 6. Uliasz M, Ornat A, Burghardt A, Muszyńska M, Szybicki D, Kurc K. Automatic Evaluation of the Robotic Production Process for an Air-craft Jet Engine Casing. Applied Sciences. 2022;12(13):6443. https://doi.org/10.3390/app12136443
  • 7. Ornat A, Uliasz M, Bomba G, Burghardt A, Kurc K, Szybicki D. Robotised Geometric Inspection of Thin-Walled Aerospace Casings. Sensors. 2022;22(9): 3457. https://doi.org/10.3390/s22093457
  • 8. Kurc K, Burghardt A, Gierlak P, Muszyńska M, Szybicki D, Ornat A, Uliasz M. Application of a 3D Scanner in Robotic Measurement of Aviation Components. Electronics. 2022;11(19): 3216. https://doi.org/10.3390/electronics11193216
  • 9. Glukhov G.E, Chernikov P.E, Karapetyan A.G, Konkov A.Y, Sharypov A.N. Automated management system of technological and production processes of the civil aviation air enterprise known as' the custom module'the operator. In Proceedings of the 34th International Business Information Management Association Conference-Vision 2020: Sustainable Economic Development and Application of Innova-tion Management from Regional expansion to Global Growth: 7297–7309.
  • 10. Szybicki D, Burghardt A, Kurc K, Gierlak P. Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Pro-cess. Sensors. 2020;20(24): 7053. https://doi.org/10.3390/s20247053
  • 11. Burghardt A, Kurc K, Szybicki D, Muszyńska M, Nawrocki J. Robot-operated quality control station based on the UTT method. Open En-gineering. 2017;7(1): 37–42. https://doi.org/10.1515/eng-2017-0008
  • 12. Burghardt A, Szybicki D, Gierlak P, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Ac-tive Selection of Contact Force. Tehnički vjesnik. 2022;29(1): 15–22. https://doi.org/10.17559/TV-20190710141137
  • 13. Sha J, Wang J, Hu H, Ye Y, Xu G. Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models. Applied Sciences. 2023;13(9): 5290. https://doi.org/10.3390/app13095290
  • 14. Bernabei M, Eugeni M, Gaudenzi P, Costantino F. Assessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven Approach. Glob J Flex Syst Manag. 2023;24: 67–86. https://doi.org/10.1007/s40171-022-00328-7
  • 15. Vasic M, Billard A. Safety issues in human-robot interactions. In 2013 IEEE International Conference on Robotics and Automation: 197–204. https://doi.org/10.1109/ICRA.2013.6630576
  • 16. Chinniah Y. (2016). Robot safety: overview of risk assessment and reduction. Advances in Robotics & Automation. 2016;5(01): 1–5. https://doi.org/10.4172/2168-9695.1000139
  • 17. Alvarado M.L. A risk assessment of human-robot interface operations to control the potential of injuries/losses at XYZ manufacturing com-pany. 2002.
  • 18. Siying Yang, Yifan Zhong, Dawei Feng, Rita Yi Man Li, Xue-Feng Shao, Wei Liu. Robot application and occupational injuries: Are ro-bots necessarily safer?. Safety Science. 2022;147: 105623. https://doi.org/10.1016/j.ssci.2021.105623
  • 19. Dhillon B.S, Anude O.C. Robot safety and reliability: A review, Micro-electronics Reliability. 1993;33(3): 413–429. https://doi.org/10.1016/0026-2714(93)90030-3
  • 20. Falandys K, Kurc K, Burghardt A, Szybicki D. Automation of the Edge Deburring Process and Analysis of the Impact of Selected Parame-ters on Forces and Moments Induced during the Process. Applied Sciences. 2023;13(17): 9646. https://doi.org/10.3390/app13179646
  • 21. Gusri A.I, Yanuar B, Yasir M.A. (2020). Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide Insert. PalArch's Journal of Archaeology of Egypt/Egyptology. 2020;17(9): 4061–4067.
  • 22. Matuszak J, Zaleski K. Warunki technologiczne procesu usuwania zadziorów z przedmiotów wykonanych ze stopów aluminium. Prze-gląd Mechaniczny. 2016;(12): 29–32. https://doi.org/10.15199/148.2016.12.5
  • 23. Kurniawan R, Kumaran S.T, Prabu V.A, Zhen Y, Park K.M, Kwak Y.I, Ko T.J. Measurement of burr removal rate and analysis of machining-EDM) for deburring drilled holes in CFRP composite. Measurement. 2017;110: 98–115. https://doi.org/10.1016/j.measurement.2017.06.008
  • 24. Kim Y.G, Kim K.J, Kim K.H. Efficient Removal of Milling Burrs by Abrasive Flow. International Journal of Precision Engineering and Manufacturing. 2021;22: 441–451. https://doi.org/10.1007/s12541-020-00455-0
  • 25. Makulavičius M, Petkevičius S, Rožėnė J, Dzedzickis A, Bučinskas V. Industrial Robots in Mechanical Machining: Perspectives and Limi-tations. Robotics. 2023;12(6): 160. https://doi.org/10.3390/robotics12060160
  • 26. Iglesias I, Sebastián M.A, Ares J.E.Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engi-neering. 2015;132: 911–917. https://doi.org/10.1016/j.proeng.2015.12.577
  • 27. Pandremenos J, Doukas C, Stavropoulos P, Chtabsolouris G. Ma-chining with robots: a critical review. Proceedings of DET2011. 1–9.
  • 28. Denkena B, Bergmann B, Lepper T. Design and optimization of a machining robot. Procedia Manufacturing. 2017;14: 89–96. https://doi.org/10.1016/j.promfg.2017.11.010
  • 29. Klimchik A, Ambiehl A, Garnier S, Furet B, Pashkevich A. Efficiency evaluation of robots in machining applications using industrial per-formance measure. Robotics and Computer-Integrated Manufactur-ing. 2017;48: 12–29. https://doi.org/10.1016/j.rcim.2016.12.005
  • 30. Pan Z, Zhang H, Zhu Z, Wang J. Chatter analysis of robotic machin-ing process. Journal of Materials Processing Technology. 2006;173(3): 301-309. https://doi.org/10.1016/j.jmatprotec.2005.11.033
  • 31. Schnoes F, Zaeh M.F. Model-based planning of machining opera-tions for industrial robots. Procedia CIRP. 2019;82: 497–502. https://doi.org/10.1016/j.procir.2019.04.331
  • 32. Kim S.H, Nam E, Ha T.I, Hwang S.H, Lee J.H, Park S.H, Min B.K. Robotic machining: A review of recent progress. International Journal of Precision Engineering and Manufacturing. 2019;20: 1629-1642. https://doi.org/10.1007/s12541-019-00187-w
  • 33. Burghardt A, Kurc K, Szybicki D, Muszyńska M, Szczęch T. Monitor-ing the parameters of the robot-operated quality control process. Ad-vances in Science and Technology. Research Journal. 2017;11(1): 232–236. https://doi.org/10.12913/22998624/68466
  • 34. Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manip-ulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490
  • 35. Posada J.R.D, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A. Automatic programming and control for robotic deburring. In Pro-ceedings of ISR 2016: 47st International Symposium on Robotics: 1–8. VDE.
  • 36. Hu J, Kabir A.M, Hartford S.M, Gupta S.K, Pagilla P.R. Robotic deburring and chamfering of complex geometries in high-mix/low-volume production applications. In 2020 IEEE 16th international con-ference on automation science and engineering (CASE): 1155–1160. IEEE.
  • 37. Bottin M, Cocuzza S, Massaro M. Variable Stiffness Mechanism for the Reduction of Cutting Forces in Robotic Deburring. Applied Sci-ences. 2021;11(6): 2883. https://doi.org/10.3390/app11062883
  • 38. Wang Q, Wang W, Zheng L, Yun C. Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robotics and Computer-Integrated Manufacturing. 2021;67: 102031. https://doi.org/10.1016/j.rcim.2020.102031
  • 39. Zhu D, Feng X, Xu X, Yang Z, Li W, Yan S, Ding H. Robotic grinding of complex components: a step towards efficient and intelligent ma-chining–challenges, solutions, and applications. Robotics and Com-puter-Integrated Manufacturing. 2020;65: 101908. https://doi.org/10.1016/j.rcim.2019.101908
  • 40. Matuszak J, Kłonica M, Zagórski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. In 2019 IEEE 5th In-ternational Workshop on Metrology for AeroSpace (MetroAero-Space); 644–648: IEEE. https://doi.org/10.1109/MetroAeroSpace.2019.8869605
  • 41. Onstein I.F, Semeniuta O, Bjerkeng M. Deburring using robot manip-ulators: A review. In 2020 3rd international symposium on small-scale intelligent manufacturing systems (SIMS): 1–7. IEEE. https://doi.org/10.1109/SIMS49386.2020.9121490
  • 42. Korzyński M. Metodyka eksperymentu. Planowanie, realizacja i statystyczne operacowanie wyników eksperymentów technologicz-nych. Wydanie II. Wydawnictwa Naukowo-Techniczne; 2017.
  • 43. Chomsamutr K, Jongprasithporn S. Optimization parameters of tool life model using the Taguchi approach and response surface meth-odology. International Journal of Computer Science Issues (IJCSI). 2012;9(1):120.
  • 44. Bhushan R. K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production. 2013;39: 242-254. https://doi.org/10.1016/j.jclepro.2012.08.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5fa10276-993b-407d-9346-49bcd8b38793
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.