PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metrological analysis of additively manufactured copies of a fossil skull

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a metrological analysis of the additively manufactured (AM) copies of a complex geometrical object, namely the fossil skull of Madygenerpeton pustulatum. This fossil represents the unique remains of an extinct “reptiliomorph amphibian” of high importance for palaeontological science. For this research, the surface was scanned and twelve different copies were 3D-printed using various devices, materials, and AM techniques. The same digitized model was used as a reference to compare with the surfaces obtained by Mitutoyo Coordinate Measuring Machine (CMM) CRYSTA-Apex S 9166 for each copy. The fidelity of the copies was assessed through statistical analysis of the distances between compared surfaces. The methodology provided a good background for the choice of the most accurate copies and the elimination of the less accurate ones. The proposed approach can be applied to any object of complex geometry when reproduction accuracy is to be assessed.
Rocznik
Strony
art. no. e143827
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
  • Department of Integrated Technologic Process and Manufacturing, National Technical University “Kharkiv Polytechnic Institute”, Ukraine
autor
  • Museum für Naturkunde Chemnitz, Germany
  • Geological Institute, TU Bergakademie Freiberg, Germany
autor
  • Łukasiewicz Research Network – Institute for Sustainable Technologies, Radom, Poland
Bibliografia
  • [1] R.R. Schoch, S. Voigt, and M. Buchwitz, “A chroniosuchid from the Triassic of Kyrgyzstan and analysis of chroniosuchian relationships,” Zool. J. Linn. Soc., vol. 160, pp. 515–530, 2010, doi: 10.1111/j.1096-3642.2009.00613.x.
  • [2] J. Patalas-Maliszewska, R. Wiśniewski, M. Topczak, and M. Wojnakowski, “Design optimization of the Petri net-based production process supported by additive manufacturing technologies,” Bull. Polish Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140693, 2022, doi: 10.24425/bpasts.2022.140693.
  • [3] X. Zhang, W. Fan, and T. Liu, “Fused deposition modeling 3D printing of polyamide-based composites and its applications,” Compos. Commun., vol. 21, p. 100413, 2020, doi: 10.1016/j.coco.2020.100413.
  • [4] J. Woźniak, G. Budzik, Ł. Przeszłowski, and K. Chudy-Laskowska, “Directions of the development of the 3D printing industry as exemplified by the polish market,” Manag. Prod. Eng. Rev., vol. 12, no. 2, pp. 98–106, 2021, doi: 10.24425/mper. 2021.137682.
  • [5] J. Gardan, “Additive manufacturing technologies: state of the art and trends,” Int. J. Prod. Res., vol. 54, no. 10, pp. 3118–3132, 2016, doi: 10.1080/00207543.2015.1115909.
  • [6] H. Elhoone, T. Zhang, M. Anwar, and S. Desai, “Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0,” Int. J. Prod. Res., vol. 58, no. 9, pp. 2841–2861, 2020, doi: 10.1080/00207543.2019.1671627.
  • [7] Y. Wang, Y. Lin, R.Y. Zhong, and X. Xu, “IoT-enabled cloudbased additive manufacturing platform to support rapid product development,” Int. J. Prod. Res., vol. 57, no. 12, pp. 3975–3991, 2019, doi: 10.1080/00207543.2018.1516905.
  • [8] M. Rosienkiewicz, J. Gabka, J. Helman, A. Kowalski, and S. Susz, “Additive manufacturing technologies cost calculation as a crucial factor in industry 4.0,” in Advances in Manufacturing. Lecture Notes in Mechanical Engineering, A. Hamrol, O. Ciszak, S. Legutko, and M. Jurczyk, Eds., Cham: Springer, 2018, pp. 171–183, doi: 10.1007/978-3-319-68619-6_17.
  • [9] E. Tsirogiannis, and G. Vosniakos, “Redesign and topology optimization of an industrial robot link for additive manufacturing,” Facta Univ. Ser. Mech. Eng., vol. 17, no. 3, pp. 415–424, 2019, doi: 10.22190/FUME181219003T.
  • [10] R. Singh at al., “Powder bed fusion process in additive manufacturing: an overview,” Mater. Today: Proc., vol. 26 (Part 2), pp. 3058–3070, 2020, doi: 10.1016/j.matpr.2020.02.635.
  • [11] M. Schneck, M. Horn, M. Schmitt, C. Seidel, G. Schlick, and G. Reinhart, “Review on additive hybrid- and multi-materialmanufacturing of metals by powder bed fusion: state of technology and development potential,” Prog. Addit. Manuf., vol. 6, no. 4, pp. 881–894, 2021, doi: 10.1007/s40964-021-00205-2.
  • [12] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani. Additive Manufacturing Technologies. 3rd edn., Cham: Springer, 2021, doi: 10.1007/978-3-030-56127-7.
  • [13] J.W. Adams, A. Olah, M.R. McCurry, and S. Potze, “Surface model and tomographic archive of fossil primate and other mammal holotype and paratype specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa,” PLoS One, vol. 10, no. 10, p. e0139800, 2015, doi: 10.1371/journal.pone.0139800.
  • [14] A.J. Das, D.C. Murmann, K. Cohrn, and R. Raskar, “A method for rapid 3D scanning and replication of large paleontological specimens,” PLoS ONE, vol. 12, no. 7, p. e0179264, 2017, doi: 10.1371/journal.pone.0179264.
  • [15] W. Gao et al., “The status, challenges, and future of additive manufacturing in engineering,” Comput.-Aided Des., vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001.
  • [16] L. Di Angelo, P. Di Stefano, and E. Guardiani, “Search for the optimal build direction in additive manufacturing technologies: A review,” J. Manuf. Mater. Process., vol. 4, no. 3, p. 71, 2020, doi: 10.3390/jmmp4030071.
  • [17] E. Dalpadulo, F. Pini, and F. Leali, “Assessment of design for additive manufacturing based on CAD platforms,” in Proc.s of International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, Cham: Springer, 2019, pp. 970–981.
  • [18] Y. Zhang, Y. Xu, and A. Bernard, “A new decision support method for the selection of RP process: knowledge value measuring,” Int. J. Comput. Integr. Manuf., vol. 27, no. 8, pp. 747–758, 2014, doi: 10.1080/0951192X.2013.834474.
  • [19] A. Razavykia, E. Brusa, C. Delprete, and R. Yavari, “An overview of additive manufacturing technologies – A review to technical synthesis in numerical study of selective laser melting,” Materials, vol. 13, no. 17, p. 3895, 2020, doi: 10.3390/ma13173895.
  • [20] L. Di Angelo, P. Di Stefano, and A. Marzola, “Surface quality prediction in FDM additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 93, no. 9, pp. 3655–3662, 2017, doi: 10.1007/s00170-017-0763-6.
  • [21] H. Chen, and Y.F. Zhao, “Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process,” Rapid Prototyping J., vol. 22, no. 3, pp. 527–538, 2016, doi: 10.1108/RPJ-11-2014-0149.
  • [22] N. Li et al., “Progress in additive manufacturing on new materials: A review,” J. Mater. Sci. Technol., vol. 35, pp. 242–269, 2019, doi: 10.1016/j.jmst.2018.09.002.
  • [23] S. Voigt et al., “Triassic life in an inland lake basin of the warm-temperate biome – the Madygen Lagerstätte (southwest Kyrgyzstan, Central Asia),” in Terrestrial conservation Lagerstätten. Windows into the evolution of life on land, N.C. Fraser, H.D. Sues, Eds., Edinburgh, London: Dunedin, 2017, pp. 65–104.
  • [24] Ya. Garashchenko, I. Kogan, and M. Rucki, “Comparative accuracy analysis of triangulated surface models of a fossil skull digitized with various optic devices,” Metrol. Meas. Syst., vol. 29, no. 1, pp. 37–51, 2022, doi: 10.24425/mms.2022.138547.
  • [25] Ya. Garashchenko, I. Kogan, and M. Rucki, “Analysis of 3D triangulated models of Madygenerpeton pustulatum fossil skull,” in Proc. euspen’s 21st International Conference & Exhibition, 2021, pp. 89–90.
  • [26] M., Rucki, Y., Garashchenko, I., Kogan, and T. Ryba, “Evaluation of the Fidelity of Additively Manufactured 3D Models of a Fossil Skull,” in: Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering. M. Diering, M. Wieczorowski, M. Harugade, A. Pereira, Eds., Cham: Springer, 2022, pp. 36–47, doi: 10.1007/978-3-031-03925-6_4.
  • [27] I. Kogan, M. Rucki, M. Jähne, D. Eger Passos, T. Cvjetkovic, and S. Schmidt, “One head,many approaches – comparing 3D models of a fossil skull,” in Photogrammetrie – Laserscanning – Optische 3D-Messtechnik: Beiträge der Oldenburger 3D-Tage 2020. T. Luhmann, C. Schumacher, Eds., Berlin:Wichmann Verlag, 2020, pp. 22–31.
  • [28] M. Rucki, I. Kogan, and Ya. Garashchenko, Distances between 3D models of a fossil skull, Dataset. Kaggle, 2022, doi: 10.34740/KAGGLE/DSV/3520649.
  • [29] M.Á. Caminero, J.M. Chacón, E. García-Plaza, P.J. Núñez, J.M. Reverte, and J.P. Becar, “Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture,” Polymers, vol. 11, no. 5, p. 799, 2019, doi: 10.3390/polym11050799.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f9f5e31-3b4d-418e-8bc1-0350116801d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.