Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Our main interest in this article is to introduce and study the class of θ-generalized demimetric mappings in Hadamard spaces. Also, a Halpern-type proximal point algorithm comprising this class of mappings and resolvents of monotone operators is proposed, and we prove that it converges strongly to a fixed point of a θ-generalized demimetric mapping and a common zero of a finite family of monotone operators in a Hadamard space. Furthermore, we apply the obtained results to solve a finite family of convex minimization problems, variational inequality problems and convex feasibility problems in Hadamard spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
95--111
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
- DSI-NRF Center of Excellence in Mathematical and Statistical Sciences(CoE-MaSS), Johannesburg,South Afric
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
autor
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Bibliografia
- [1] W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal. 24(2017), no. 3, 1015-1028.
- [2] K. O. Aremu, C. Izuchukwu, G. C. Ugwunnadi, and O. T. Mewomo, On the proximal point algorithm and demimetric mappings in CAT (0) spaces, Demonstr. Math. 51(2018), 277-294.
- [3] H. Komiya and W. Takahashi, Strong convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Convex Anal. 24(2017), no. 4, 1357-1373.
- [4] W. Takahashi, Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, J. Indust. Appl. Math. 34(2017), no. 1, 41-57.
- [5] W. Takahashi, C. F. Wen, and J. C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory 19(2017), no. 1, 407-419.
- [6] T. Kawasaki and W. Takahashi, A strong convergence theorem for countable families of nonlinear nonself mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 19(2018), 543-560.
- [7] W. Takahashi, The split commonfixed point problem for generalized demimetric mappings in two Banach spaces, Optimization 68(2019), no. 1, 411-427.
- [8] M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194(2013), no. 2, 689-701.
- [9] M. Bačák, B. Hua, J. Jost, M. Kell, and A. Schikorra, A notion of nonpositive curvature for general metric spaces, Different. Geom. Appl. 38(2015), 22-32.
- [10] H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba, and G. C. Ugwunnadi, Iterative algorithm for a family of monotonne inclusion problems in CAT(0) spaces, Quaest. Math. (2019), DOI: 10.2989/16073606.2019.1593255.
- [11] L. O. Jolaoso, T. O. Alakoya, A. Taiwo, and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. PalermoII (2019), DOI: 10.1007/s12215-019-00431-2.
- [12] L. O. Jolaoso, F. U. Ogbuisi, and O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math. 9(2018), no. 3, 167-184.
- [13] L. O. Jolaoso, O. K. Oyewole, C. C. Okeke, and O. T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math. 51(2018), 211-232.
- [14] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A self-adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math. 52(2019), 183-203.
- [15] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. 39(2020), 38, DOI: 10.1007/s40314-019-1014-2.
- [16] G. Marino, B. Scardamaglia, and E. Karapinar, Strong convergence theorem for strict pseudo-contractions in Hilbert spaces, J. Inequal. Appl. 2016(2016), 134, DOI: 10.1186/s13660-016-1072-6.
- [17] C. C. Okeke, C. Izuchukwu, and O. T. Mewomo, Strong convergence results for convex minimization and monotonne variational inclusion problems in Hilbert space, Rend. Circ. Mat. Palermo, II Ser. (2019), DOI: 10.1007/s12215-019-00427-y.
- [18] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38(2019), 77, DOI: 10.1007/s40314-019-0841-5.
- [19] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. 43(2020), 1893-1918, DOI: 10.1007/s40840-019-00781-1.
- [20] A. Taiwo, L. O. Jolaoso, and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ricerche Mat. 69(2020), 235-259, DOI:10.1007/s11587-019-00460-0.
- [21] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 4(2004), 309-316.
- [22] W. A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, vol. 64, Univ. Sevilla Secr. Publ., Seville, 2003, pp. 195-225.
- [23] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56(2008), 2572-2579.
- [24] S. H. Khan and M. Abbas, Strong and Δ-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61(2011), no. 1, 109-116.
- [25] S. S. Chang, L. Wang, H. W. Joseph Lee, C. K. Chan, and L. Yang, Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput. 219(2012), 2611-2617.
- [26] I. Uddin and M. Imdad, On certain convergence of S-iteration scheme in CAT(0) spaces, Kuwait J. Sci. 42(2015), no. 2, 93-106.
- [27] I. Uddin and M. Imdad, Some convergence theorems for a hybrid pair of generalized nonexpansive mappings in CAT(0) spaces, J. Nonlinear Convex Anal. 16(2015), no. 3, 447-457.
- [28] S. Aggarwal and I. Uddin, Convergence and stability of Fibonacci-Mann iteration for a monotone non-Lipschitzian mapping, Demonstr. Math. 52(2019), 388-396.
- [29] W. Laowang and B. Panyanak, Strong and Δ-convergence theorems for multivalued mappings in spaces, J. Inequal. Appl. 2009(2019), 730132, DOI: 10.1155/2009/730132.
- [30] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 2004(2004), 4, 309-316.
- [31] S. Ranjbar and H. Khatibzadeh, Strong and Δ-convergence to a zero of a monotone operator in CAT(0) spaces, Mediterr. J. Math. 14(2017), 56, DOI: 10.1007/s00009-017-0885-y.
- [32] S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl. 2010(2010), 471781, DOI: 10.1155/2010/471781.
- [33] N. Wairojjana, N. Pakkaranang, I. Uddin, P. Kumam, and A. M. Awwal, Modified proximal point algorithms involving convex combination technique for solving minimization problems with convergence analysis, Optimization (2019), DOI:10.1080/02331934.2019.1657115.
- [34] G. C. Ugwunnadi, C. Izuchukwu, and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat. 30(2019), 151-169.
- [35] C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan, and M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms 82(2019), 909-935
- [36] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math Soc. 103(2017), 70-90.
- [37] B. Martinet, Regularisation d’inequations variationelles par approximations, Rev Francaise d’inform et de Rech Re 3(1970), 154-158.
- [38] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(1976), no. 5, 877-898.
- [39] C. C. Okeke and C. Izuchukwu, A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spaces, Optim. Methods Softw. (2018), DOI: 10.1080/10556788.2018.1472259.
- [40] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15(1990), no. 6, 537-558.
- [41] I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata 133(2008), 195-218.
- [42] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60(1976), 179-182.
- [43] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68(2008), no. 12, 3689-3696.
- [44] B. A. Kakavandi and M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73(2010), no. 10, 3450-3455.
- [45] P. Chaipunya and P. Kumam, On the proximal point method in Hadamard spaces, Optimization 10(2017), no. 66, 1647-1665.
- [46] H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, arXiv:1410.1137v1 [math.FA], 2014.
- [47] B. Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Am. Math. Soc. 141(2013), no. 3, 1029-1039.
- [48] S. Dhompongsa, W. A. Kirk, and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8(2007), no. 1, 35-45.
- [49] P. E. Maingé and S. Măruşter, Convergence in norm of modified Krasnoselski-Mann iterations for fixed points of demicontractive mappings, Comput. Appl. Math. 217(2011), no. 24, 9864-9874.
- [50] R. Wangkeeree and P. Preechasilp, Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces, J. Inequal. Apl. 2013(2013), 93, DOI: 10.1186/1029-242X-2013-93.
- [51] H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, Fixed Point Theory Appl. 17(2015), 557-574.
- [52] K. S. Kim, Some convergence theorems for contractive type mappings in CAT(0) spaces, Abstr. Appl. Anals. 2013(2013), 381715, DOI: 10.1155/2013/381715.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f9e7ac3-ca21-4ca1-bd48-e24ea463244e