PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical fiber accelerometer for shock motion measurement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes an accelerometer to measure shock motion with a fiber Bragg grating (FBG) sensing element attached to a 3D-printed elastomer structure. The structure is designed to be able to measure shock motion from two directions (+X and –X ) in 1D space using two optical sensors, FBG1 and FBG2, respectively. The deformation in the elastic structure leads to a change in the wavelength of the sensing element, and it is observed that the total Bragg wavelength shifts over the recorded acceleration range are 2.42 nm (FBG1) and 1.40 nm (FBG2) with a randomly generated acceleration between zero g and 600g (1g = 9.81 m/s2). Numerical simulations are also used to observe the suitable working frequency range for the proposed accelerometer and the suggested working frequency range for this sensor in the range of 40–240 Hz. Such sensors are typically used in impact testing, safety validation, and heavy industrial applications, where the magnitude of acceleration is extremely high but the frequency content remains relatively low.
Czasopismo
Rocznik
Strony
197--206
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807618, Taiwan
  • Faculty of Mechanical Engineering, Nha Trang University, No. 02 Nguyen Dinh Chieu Street, Nha Trang City, Khanh Hoa 57000, Vietnam
  • Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807618, Taiwan
  • Department of Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 805301, Taiwan
autor
  • Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807618, Taiwan
Bibliografia
  • [1] Vorathin E., Hafizi Z.M., Ismail N., Loman M., Review of high sensitivity fibre-optic pressure sensors for low pressure sensing, Optics and Laser Technology 121, 2020: 105841. https://doi.org/ 10.1016/j.optlastec.2019.105841
  • [2] Huang J., Zhou Z., Zhang D., Wei Q., A fiber Bragg grating pressure sensor and its application to pipeline leakage detection, Advances in Mechanical Engineering 5, 2013: 590451. https://doi.org/ 10.1155/2013/590451
  • [3] Bedi A., Kothari V., Kumar S., Design and analysis of FBG based sensor for detection of damage in oil and gas pipelines for safety of marine life, Proceedings of the SPIE, Vol. 10488, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, 2018: 104880X. https:// doi.org/10.1117/12.2285923
  • [4] Nguyen V.Q., Chiang C.-C., Tsai L., Enhanced sensitivity of bare FBG pressure sensor based on oval-shaped 3D printed structure, Optical Fiber Technology 73, 2022: 103022. https://doi.org/ 10.1016/j.yofte.2022.103022
  • [5] Nguyen V.Q., Chiang C.-C., Tsai L., Simple pressure sensor with highly customizable sensitivity based on fiber Bragg grating and pill-shaped 3D-printed structure, Journal of Sensors, Vol. 2022, 2022: 9248873. https://doi.org/10.1155/2022/9248873
  • [6] Lin Y.-K., Hsieh T.-S., Tsai L., Wang S.-H., Chiang C.-C., Using three-dimensional printing technology to produce a novel optical fiber Bragg grating pressure sensor, Sensors and Materials 28(5), 2016: 389-394.
  • [7] Chiang J.-S., Chang H.-Y., Sun N.-H., Liu W.-F., High sensitive two-dimension tilted-meter based on chirped fiber Bragg gratings, IEEE Sensors Journal 16(23), 2016: 8477-8482. https://doi.org/ 10.1109/JSEN.2016.2582507
  • [8] Shivashankar P., Gopalakrishnan S., Review on the use of piezoelectric materials for active vibration, noise, and flow control, Smart Materials and Structures 29(5), 2020: 053001. https://doi.org/ 10.1088/1361-665X/ab7541
  • [9] Pramanik R., Arockiarajan A., Effective properties and nonlinearities in 1-3 piezocomposites: A comprehensive review, Smart Materials and Structures 28(10), 2019: 103001. https://doi.org/ 10.1088/1361-665X/ab350a
  • [10] D’Alessandro A., Scudero S., Vitale G., A review of the capacitive MEMS for seismology, Sensors 19(14), 2019: 3093. https://doi.org/10.3390/s19143093
  • [11] Guo Y., Chen M., Xiong L., Zhou X., Li C., Fiber Bragg grating based acceleration sensors: A review, Sensor Review 41(1), 2021: 101-122. https://doi.org/10.1108/SR-10-2020-0243
  • [12] Fan W., Wen J., Gao H., Qiao X., Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever, Optical Fiber Technology 70, 2022: 102888. https://doi.org/10.1016/ j.yofte.2022.102888
  • [13] Li H., Zhang X., Zhou R., Qiao X., Low frequency fiber optic accelerometer based on lever amplification structure, Optical Fiber Technology 80, 2023: 103434. https://doi.org/10.1016/j.yofte. 2023.103434
  • [14] Xu Y., Fan W., Gao H., Qiao X., Fiber Bragg grating low-frequency accelerometer based on spring structure, Optical Fiber Technology 82, 2024: 103614. https://doi.org/10.1016/j.yofte.2023.103614
  • [15] Guo T., Song H., Sha S., Li C., Xu M., Highly sensitive fiber bragg grating accelerometer with low resonant frequency, Optical Fiber Technology 87, 2024: 103919. https://doi.org/10.1016/ j.yofte.2024.103919
  • [16] Nguye V.-Q., Chiang C.-C., Hsu H.-C., Tsai L., Shock accelerometer based on fiber Bragg grating sensor with a novel 3D printed structure for medium frequency measurement applications and high acceleration range, Optical Fiber Technology 80, 2023: 103386. https://doi.org/10.1016/j.yofte. 2023.103386
  • [17] Nguyen V.Q., Chiang C.-C., Le H.-D., Tsai L., Fabrication and testing of FBG sensor-based onedimensional shock accelerometer attached to novel 3D printed structure, Optik 276, 2023: 170632. https://doi.org/10.1016/j.ijleo.2023.170632
  • [18] Wang X., Guo Y., Xiong L., Wu H., High-frequency optical fiber Bragg grating accelerometer, IEEE Sensors Journal 18(12), 2018: 4954-4960. https://doi.org/10.1109/JSEN.2018.2833885
  • [19] Hisham H., Fiber Bragg Grating Sensors: Development and Applications, CRC Press 2019.
  • [20] Foster J.T., Frew D.J., Forrestal M.J., Nishida E.E., Chen W., Shock testing accelerometers with a Hopkinson pressure bar, International Journal of Impact Engineering 46, 2012: 56-61. https:// doi.org/10.1016/j.ijimpeng.2012.02.006
  • [21] Frew D.J., Duong H., A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer, Proceedings of the SEM Annual Conference, Albuquerque, New Mexico, USA, 2009.
  • [22] Forrestal M.J., Togami T.C., Baker W.E., Frew D.J., Performance evaluation of accelerometers used for penetration experiments, Experimental Mechanics 43, 2003: 90-96. https://doi.org/10.1007/ BF02410489
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f9a2ba0-0caf-4b8f-81c2-6651d738385e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.