PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ANN as justified granular computing mechanism for medical data classification

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The medical data and its classification have to be treated in particular way. The data should not be modified or altered, because this could lead to false decisions. Most state-of-the-art classifiers are using random factors to produce higher overall accuracy of diagnosis, however the stability of classification can vary significantly. Medical support systems should be trustworthy and reliable, therefore this paper proposes fusion of multiple classifiers based on artificial Neural Network (ANN). The structure selection of ANN is performed using granular paradigm, where granulation level is defined by ANN complexity. The classification results are merged using voting procedure. Accuracy of the proposed solution was compared with state-of-the-art classifiers using real medical data coming from two medical datasets. Finally, some remarks and further research directions have been discussed.
Rocznik
Tom
Strony
85--90
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Computer Science, University of Silesia, Bedzinska 39, 41-200 Sosnowiec, Poland
Bibliografia
  • [1] BERNAS M., ORCZYK T., MUSIALIK J., HARTLEB M., BOSKA-FAJFROWSKA B. Justified granulation aided noninvasive liver fibrosis classification system. Bmc Medical Informatics And Decision Making, 2015, Vol. 15(64).
  • [2] BERNAS M., ORCZYK T., PORWIK P. Fusion of granular computing and k-nn classifiers for medical data support system. The Series Lecture Notes In Computer Science, 2015, Vol. 9012. pp. 62–71.
  • [3] BERNAS M., PLACZEK B., PORWIK P., PAMULA T. Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. Iet Intelligent Transport Systems Doi: 10.1049/Iet-Its.2013.0164, 2015.
  • [4] BERTHOLD M. Mixed fuzzy rule formation. International Journal Of Approximate Reasoning, 2003, Vol. 32 (2-3). pp. 67–84.
  • [5] BERTHOLD M., DIAMOND J. Constructive training of probabilistic neural networks. Neurocomputing, 1998, Vol. 19 (1-3). pp. 167–183.
  • [6] BREIMAN L. Random forests. Machine Learning, 2001, Vol. 45 (1). pp. 5–32.
  • [7] CAO Y., LIU S., ZHANG L., QIN J., WANG J., TANG K. Prediction of protein structural class with rough sets. Bmc Bioinformatics, 2006, Vol. 7:20.
  • [8] EMAM K., DANKAR F., NEISA A., JONKER E. Evaluating the risk of patient re-identifcation from adverse drug event reports. Bmc Medical Informatics And Decision Making, 2013, Vol. 13(114).
  • [9] FENG C., SUTHERLAND A., KING R., MUGGLETON S., HENERY F. Comparison of machine learning classifiers to statistics and neural networks. Proceedings Of The Third International Workshop In Artificial Intelligence And Statistics, 1993. pp. 41–52.
  • [10] HIROTA K. Concepts of probabilistic sets. Fuzzy Sets And Systems, 1981, Vol. 5 (1). pp. 31–46.
  • [11] HUANG B., ZHUANG Y., LI H. Information granulation and uncertainty measures in interval-valued intuitionist fuzzy information systems. European Journal Of Operational Research, 2013, Vol. 231. pp. 162–170.
  • [12] HUNTER D., YU H., PUKISH I M. S., KOLBUSZ J., WILAMOWSKI B. M. Selection of proper neural network sizes and architectures a comparative study. Ieee Transactions On Industrial Informatics, 2012, Vol. 8(2). pp. 228–240.
  • [13] JIN T., SUN B., ZHANG Y. Granular support vector machines for medical binary classification problems. Proc. On Computational Intelligence In Bioinformatics And Computational Biology, 2004. pp. 73 – 78.
  • [14] JOHN G., LANGLEY P. Estimating continuous distributions in bayesian classifiers. In Proceedings Of The Eleventh Conference On Uncertainty In Artificial Intelligence, 1995. pp. 338–345.
  • [15] JOSSINET J. Variability of impedivity in normal and pathological breast tissue. Med. Biol. Eng. & Comput, 1996, Vol. 34. pp. 346–350.
  • [16] KUDLACIK P., PORWIK P. A new approach to signature recognition using the fuzzy method. Pattern Analysis And Applications, 2014, Vol. 17(3). pp. 451–463.
  • [17] LI B., WANG K., ZHANG D. On-line signature verification based on pca (principal component analysis) and mca (minor component analysis). In: Proc. Of First International Conference On Biometric Authentication Icba04, 2004. pp. 540–546.
  • [18] MAGO V., MORDEN H., FRITZ C., TIANKUANG W., NAMAZI S., GERANMAYEH P., CHATTOPADHYAY R., DABBAGHIAN V. The impact of social factors on homelessness: A fuzzy cognitive map approach. Bmc Medical Informatics And Decision Making, 2013, Vol. 13(94).
  • [19] PANTAZI S., AROCHA J., R M. Case-based medical informatics. Bmc Medical Informatics And Decision Making, 2004, Vol. 4(19).
  • [20] PEDRYCZ W. Interpretation of clusters in the framework of shadowed sets. Pattern Recognition Letters, 2005, Vol. 26 (15). pp. 2439–24493.
  • [21] PEDRYCZ W., GOMIDE F. Fuzzy systems engineering: Toward human-centric computing. John Wiley press, 2007.
  • [22] SONG M., WANG Y. Human centricity and information granularity in the agenda of theories and applications of soft computing. Applied Soft Computing Doi: 10.1016/J.Asoc.2014.04.040, 2014. pp. 610–613.
  • [23] ZHANG Y., ZHANG L., XU C. The property of different granule and granular methods based on quotient space. Information Granularity, Big Data, And Computational Intelligence Studies In Big Data, 2012, Vol. 8. pp. 171–190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f99b601-ec58-4578-af3c-986bc7627948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.