PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for reducing the length difference of Vickers indentation diagonal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to analyse the reason for the relatively large length difference of the diagonal of Vickers indentation on the tested material with mechanical anisotropy and propose a feasible method to reduce it. The Vickers hardness test results of the tested material with mechanical anisotropy have shown that the length difference of the diagonal of Vickers indentation on the tested material with mechanical anisotropy would be more than 5% very likely, which is against the test requirement of the related test standard and would affect the test accuracy and effectiveness of the Vickers hardness test. The finite element simulation results of the Vickers hardness test of the tested material with mechanical anisotropy have also shown that the anisotropy of mechanical properties of tested material would affect the length recovery of the diagonal of Vickers indentation on the surface of tested material, thereby affecting the difference of the diagonal length of Vickers indentation. This paper has proposed a method to decrease of diagonal length difference of Vickers indentation through rotating the indenter or the tested material properly and conducting a multiple Vickers hardness test, thereby improving the accuracy and effectiveness of the Vickers hardness test according to the related test standards.
Rocznik
Strony
619--636
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • [1] Guštin, A. Z., Žužek, B., & Podgornik, B. (2021). Hardness measurement of thin strips. Measurement, 182, 109633. https://doi.org/10.1016/j.measurement.2021.109633
  • [2] Yadav, M. K., Arora, K., Kumar, S., & Kumar, A. (2023). Micro-hardness evaluation of the bobbin tool-friction stir welded AA6063 using regression-based machine learning. Materials Letters, 349, 134751. https://doi.org/10.1016/j.matlet.2023.134751
  • [3] Yang, Y., Bi, J., Sun, K., Qiao, L., Liang, G., Wang, H., ... & Chen, Y. (2023). The effect of chemical element on hardness in high-entropy transition metal diboride ceramics. Journal of the European Ceramic Society, 43(14), 5774-5781. https://doi.org/10.1016/j.jeurceramsoc.2023.06.003
  • [4] Xu, R., Liu, Y., & Sun, F. (2019). Effect of isothermal aging on the microstructure, shear behavior and hardness of the Sn58Bi/Sn3.0Ag0.5Cu/Cu solder joints. Results in Physics, 15, 102701. https://doi.org/10.1016/j.rinp.2019.102701
  • [5] Zakarian, D., & Khachatrian, A. (2021). Temperature dependence of the hardness of materials with a metallic, covalent-metallic bonds. Metal Powder Report, 76(6), 26-31. https://doi.org/10.1016/s0026-0657(21)00300-3
  • [6] Zhang, H., Liu, Y., Wang, L., Sun, F., Fan, X., & Zhang, G. (2019). Indentation hardness, plasticity and initial creep properties of nanosilver sintered joint. Results in Physics, 12, 712-717. https://doi.org/10.1016/j.rinp.2018.12.026
  • [7] Germak, A., & Origlia, C. (2011). Investigations of new possibilities in the calibration of diamond hardness indenters geometry. Measurement, 44(2), 351-358. https://doi.org/10.1016/j.measurement.2010.10.012
  • [8] Kucharski, S., Mackiewicz, S., Katz, T., Starzyński, G., Ranachowski, Z., & Woźniacka, S. (2023). Evaluation of fatigue damage of a railhead using an indentation test, acoustic methods and microstructural observations. International Journal of Fatigue, 167, 107346. https://doi.org/10.1016/j.ijfatigue.2022.107346
  • [9] Rizza, P., Prato, A., Machado, R. R., & Germak, A. (2023). The role of influence coefficients in hardness measurements: A case study in Rockwell hardness measurements. Measurement, 213, 112713. https://doi.org/10.1016/j.measurement.2023.112713
  • [10] Du, X., Qian, Z., & Liu, X. (2022). In-situ synthesis and chemical bonding of the Al-doped β-SiC particles in Al-Si-C light alloys. Results in Physics, 43, 106094. https://doi.org/10.1016/j.rinp.2022.106094
  • [11] International Organization for Standardization. (2023). Metallic materials. In Vickers hardness test. Part 1: test method (ISO Standard No. BS EN ISO 6507-1:1998). https://doi.org/10.3403/01274907
  • [12] ASTM International (2017). Standard test methods for Vickers hardness and Knoop hardness of metallic materials (Standard No. ASTM E92-17). https://doi.org/10.1520/e0092-23
  • [13] Parvaresh, B., Salehan, R., & Miresmaeili, R. (2021). Investigating isotropy of mechanical and wear properties in as-deposited and inter-layer cold worked specimens manufactured by wire arc additive manufacturing. Metals and Materials International, 27, 92-105. https://doi.org/10.1007/s12540-020-00793-8
  • [14] Voyiadjis, G. Z., Znemah, R. A., Wood, P., Gunputh, U., & Zhang, C. (2021). Effect of element wall thickness on the homogeneity and isotropy of hardness in SLM IN718 using nanoindentation. Mechanics Research Communications, 114, 103568. https://doi.org/10.1016/j.mechrescom.2020.103568
  • [15] Zecevic, M., Cawkwell, M. J., Ramos, K. J., & Luscher, D. J. (2021). Simulating Knoop hardness anisotropy of aluminum and β-HMX with a crystal plasticity finite element model. International Journal of Plasticity, 144, 103045. https://doi.org/10.1016/j.ijplas.2021.103045
  • [16] Jamali, A., & Mahmudi, R. (2023). Anisotropy of mechanical properties and hardness homogeneity in the three orthogonal directions of a multi-directionally forged ZK60 Mg alloy. Materials Science and Engineering: A, 884, 145552. https://doi.org/10.1016/j.msea.2023.145552
  • [17] Barajas, C., De Vicente, J., Caja, J., Maresca, P., & Gómez, E. (2017). Considerations to the hardness Brinell measurement using optical equipment. Procedia Manufacturing, 13, 550-557. https://doi.org/10.1016/j.promfg.2017.09.089
  • [18] Fidelus, J. D., Germak, A., & Origlia, C. (2021). Bilateral comparison in Rockwell C hardness scale between INRIM and GUM. Measurement: Sensors, 18, 100360. https://doi.org/10.1016/j.measen.2021.100360
  • [19] Li, Z., & Yin, F. (2021). Automated measurement of Vickers hardness using image segmentation with neural networks. Measurement, 186, 110200. https://doi.org/10.1016/j.measurement.2021.110200
  • [20] International Organization for Standardization. (2019). Metallic Materials-Tensile Testing - Part 1: Method of Test at Room Temperature (ISO Standard No. BS EN ISO 6892-1:2019 - TC). https://doi.org/10.3403/30144369u
  • [21] Zhang, P., Zeng, W., Ma, H., Zhang, F., Xu, J., Liang, X., & Zhao, Y. (2023). Research on tensile anisotropy of Ti-22Al-25Nb alloy isothermally forged in B2 phase region related with texture and variant selection. Materials Characterization, 201, 112899. https://doi.org/10.1016/j.matchar.2023.112899
  • [22] Ge, J., Yuan, B., Chen, H., Pan, J., Liu, Q., Yan, M., ... & Zhang, L. (2023). Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys. Journal of Materials Research and Technology, 24, 8656-8668. https://doi.org/10.1016/j.jmrt.2023.05.046
  • [23] Xu, X., Hao, M., Chen, J., He, W., Li, G., Jiao, C., ... & Zhou, X. (2022). Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al-Li-Cu-Mg plates. Materials Science and Engineering: A, 829, 142135. https://doi.org/10.1016/j.msea.2021.142135
  • [24] Ben, L. I. N., Li, H. R., Deng, S. X., Zeng, G. J., Tang, J. G., Li, J. F., & Li, X. W. (2023). Anisotropy of Al-Li alloy plate and its heredity effect in mechanical property distribution of spundome. Transactions of Nonferrous Metals Society of China, 33(5), 1318-1330. https://doi.org/10.1016/S1003-6326(23)66185-0
Uwagi
1. This research has been funded by the Startup Research Fund of Zhengzhou University (No. 32212492).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f986b01-8ccd-4896-a66a-9c97ca432c14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.