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BOUNDARY VALUE PROBLEMS FOR POISSON
INTEGRALS FOR HERMITE EXPANSIONS

GRAŻYNA KRECH

Abstract

The aim of this paper is the study the Poisson integral for Hermite expansions. We
present some boundary value problems related to this integral and its various modifica-
tions.

1. Introduction

Let Lp(R) denote the set of functions f defined on R such that
∞∫
−∞

|f(t)|p dt <∞ if 1 ≤ p <∞,

and f is bounded almost everywhere on R if p =∞.
In the paper [4] the author presented some approximation properties of

the Poisson integral for Hermite function expansions given by

A(f)(r, y) = A(f ; r, y) =

∞∫
−∞

r
1
2K(r, y, z) f(z) dz, f ∈ Lp(R),

where

K(r, y, z) =
∞∑
n=0

rnhn(y)hn(z), 0 < r < 1,

hn(x) =
(
2nn!
√
π
)− 1

2 exp

(
−x

2

2

)
Hn(x)

andHn is the nth Hermite polynomial (see, for example, [10]). The operator
A(f) is linear and positive. Basic facts on positive linear operators and its
applications can be found in [1, 2].

In [4] the following theorem was proved.
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Theorem 1. [4] Let y0 ∈ R and let f = f1 + f2, where f1 ∈ L1(R),
f2 ∈ L∞(R). If f is continuous at y0, then

lim
(r,y)→(1−,y0)

A(f ; r, y) = f(y0).

Gosselin and Stempak in [3] considered the integral A0(f) of a function
f ∈ Lp(R) defined by

A0(f)(x, y) = A0(f ;x, y) =

∞∫
−∞

P (x, y, z)f(z) dz,

where

P (x, y, z) =

∞∑
n=0

hn(y)hn(z) exp (−(2n+ 1)x) , x > 0

and
P (x, y, z) = e−xK(e−2x, y, z).

Gosselin and Stempak [3] obtained the following results.

Theorem 2. [3] If f ∈ Lp(R), 1 ≤ p ≤ ∞, then A0(f) is of the class C∞
on the set (0,∞)× R and A0(f) is a solution of the differential equation

∂u(x, y)

∂x
=
∂2u(x, y)

∂y2
− y2u(x, y).

Theorem 3. [3] Let f ∈ Lp(R). Then
(a) ‖A0(f ;x, ·)‖p ≤ (cosh 2x)−

1
2 ‖f‖p, 1 ≤ p ≤ ∞,

(b) ‖A0(f ;x, ·)− f(·)‖p → 0 as x→ 0, 1 ≤ p <∞,
(c) limx→0A0(f ;x, y) = f(y) almost everywhere, 1 ≤ p <∞.

It is worth to mention that approximation properties of various Poisson
integrals associated with Hermite and Laguerre polynomials were studied
in one and two dimensions in [5, 6, 7, 8, 9, 11].

In this paper we indicate boundary value problems related to A(f) and
some modifications of this operator.

2. Boundary value problems

Below we present announced theorems. We omit the proofs of them,
because there are a simple consequence of previous properties.

Theorem 4. Let f ∈ Lp(R), 1 ≤ p ≤ ∞. Then A(f) is of the class C∞ on
the set (0, 1)× R. Moreover, A(f) is a solution of the problem

−2r∂u(r, y)
∂r

=
∂2u(r, y)

∂y2
− y2u(r, y), (r, y) ∈ (0, 1)× R,
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lim
r→1−

‖u(r, ·)− f(·)‖p = 0, 1 ≤ p <∞.

We introduce the operator A1 given by

A1(f)(t, y) = A1(f ; t, y) =

∞∫
−∞

exp

(
−1

t

)
K

(
exp

(
−2

t

)
, y, z

)
f(z) dz

for f ∈ Lp(R), 1 ≤ p ≤ ∞, t > 0 and y ∈ R.

Theorem 5. Let f ∈ Lp(R), 1 ≤ p ≤ ∞. Then A1(f) is of the class C∞
on the set R+ × R and A1(f) is a solution of the problem

−t2∂u(t, y)
∂t

=
∂2u(t, y)

∂y2
− y2u(t, y), (t, y) ∈ R+ × R,

lim
t→∞
‖u(t, ·)− f(·)‖p = 0, 1 ≤ p <∞.

Let us consider the operator A2 defined by

A2(f)(r, y) = A2(f ; r, y) = ρ(r)

∞∫
−∞

K(r, y, z)f(z) dz

for f ∈ Lp(R), 1 ≤ p ≤ ∞, 0 < r < 1, where the function ρ is continuously
differentiable in (0, 1) and such that

ρ(r) > 0 and lim
r→1−

ρ(r) = 1.

We introduce the notation

T =
∂2

∂y2
− y2 + 2r

∂

∂r
− 2r

ρ′(r)

ρ(r)
+ 1 and T 2 = T (T ).

Theorem 6. Let y0 ∈ R. If f is as in Theorem 1, then A2(f) is of the
class C∞ on the set (0, 1)× R and A2(f) is a solution of the problem

Tu(r, y) = 0, (r, y) ∈ (0, 1)× R,

lim
(r,y)→(1−,y0)

u(r, y) = f(y0).

For f, g ∈ Lp(R), 1 ≤ p ≤ ∞ we define the operator V :

V (f, g)(r, y) = V (f, g; r, y) = ρ1(r)A2(f ; r, y) +A2(g; r, y),

where the function ρ1 is continuously differentiable in (0, 1), 0 < r < 1,
y ∈ R.
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Theorem 7. Let y0 ∈ R. If f, g are as in Theorem 1 and

lim
r→1−

ρ1(r) = 0, lim
r→1−

ρ′1(r) =
1

2
,

∂

∂r

(
rρ′1(r)

)
= 0,

then V (f, g) is of the class C∞ on the set (0, 1)×R and V (f, g) is a solution
of the problem

T 2u(r, y) = 0, (r, y) ∈ (0, 1)× R,
lim

(r,y)→(1−,y0)
u(r, y) = g(y0),

lim
(r,y)→(1−,y0)

Tu(r, y) = f(y0).

Remark 1. From the assumptions of Theorem 7 it follows that ρ1(r) =
1
2 ln r. In this case the operator V is of the form

V (f, g; r, y) =
1

2
ρ(r) ln r

∞∫
−∞

K(r, y, z)f(z) dz + ρ(r)

∞∫
−∞

K(r, y, z)g(z) dz

for 0 < r < 1, y ∈ R.

Theorem 8. Let y0 ∈ R. If f, g are as in Theorem 1 and if

lim
r→1−

ρ1(r) = 0, lim
r→1−

ρ′1(r) =
1

2
,

2r
∂

∂r

(
rρ′1(r)

)
+ rρ2(r)ρ

′
1(r) = 0,

where ρ2 is some continuous function, then V (f, g) is of the class C∞ on
the set (0, 1)× R and V (f, g) is a solution of the problem

T 2u(r, y) + ρ2(r)Tu(r, y) = 0, (r, y) ∈ (0, 1)× R,

lim
(r,y)→(1−,y0)

u(r, y) = g(y0),

lim
(r,y)→(1−,y0)

Tu(r, y) = f(y0).
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