PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerobic biodegradation of norfloxacin and ofloxacin by a microbial consortium

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompost jako źródło mikroorganizmów biorących udział w biodegradacji norfloksacyny i ofloksacyny
Języki publikacji
EN
Abstrakty
EN
Since fluoroquinolone (FQ) antibiotics are extensively used both in human and veterinary medicine their accumulation in the environment is causing increasing concern. The aim of the study was to isolate a microbial consortium resistant to ofloxacin and norfloxacin and able to biodegrade both antibiotics. Green compost was used as a source of microorganisms. The biodegradation efficiency was monitored by changes of antibiotics concentrations and toxicity. The microbial consortium was composed of two bacterial isolates: Klebsiella pneumoniae (K2) and Achromobacter sp. (K3) and two fungi Candida manassasensis (K1) and Trichosporon asahii (K4). All the isolates were characterized as highly resistant to both antibiotics – ofloxacin and norfloxacin. FQs were supplied individually into the culture medium in the presence of an easily degradable carbon source – glucose. Biodegradation of norfloxacin was much faster than ofloxacin biodegradation. During 20 days of the experiment, the norfloxacin level decreased by more than 80%. Ofloxacin was generally biodegraded thereafter at relatively slow biodegradation rate. After 28 days the ofloxacin level decreased by 60%. Similarly, the toxicity of biodegraded antibiotics decreased 4-fold and 3.5-fold for norfloxacin and ofloxacin, respectively. The ability of the bacterial-fungal consortium to degrade antibiotics and reduce toxicity could help to reduce environmental pollution with these pharmaceutical.
PL
Antybiotyki to zróżnicowana grupa związków, która nie ma konkretnych uregulowań prawnych, dotyczących ich występowania w środowisku, zarówno wodnym jak i glebowym. Farmaceutyki przedostają się do środowiska m.in. wraz ze ściekami oczyszczonymi z oczyszczalni ścieków i jako substancje czynne biologicznie stanowią poważne zagrożenie dla organizmów żywych. Ich akumulacja w środowisku prowadzi do nieodwracalnych zmian w ekosystemach oraz szerzenia się zjawiska oporności wśród mikroorganizmów. Fluorochinolony (FQ) to syntetyczne substancje antybakteryjne o zwiększonym potencjale farmakokinetycznym i szerokim spektrum działania. FQ to jedna z najszybciej rozwijających się klas antybiotyków coraz częściej stosowanych zarówno w szpitalach, jak i w społecznościach lokalnych w leczeniu różnego typu zakażeń. Norfloksacyna i ofloksacyna to FQ II generacji o podobnej budowie strukturalnej wykazujące aktywność głównie wobec bakterii Gram-ujemnych. Ze względu na swoja budowę antybiotyki te w niewielkim stopniu są rozkładane w środowisku, przez długi czas kumulują się w wodzie i w glebie, oddziałując w na organizmy żywe. Celem pracy była ocena toksyczności ofloksacyny i norfloksacyny po biodegradacji przez zespół mikroorganizmów wyizolowany z kompostu. Proces biodegradacji przeprowadzono w bioreaktorach New Brunswick™ BioFlo® 415 o pojemności 5,5 l. Stopień degradacji określono za pomocą chromatografi i cieczowej w odwróconym układzie faz. Do oceny toksyczności wykorzystano test Microtox® oparty na pomiarach aktywności bakterii luminescencyjnych Vibrio fischeri.
Rocznik
Strony
40--47
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Institute for Ecology of Industrial Areas, Poland
  • Faculty of Organization and Management, Silesian University of Technology, Poland
autor
  • Swedish Environmental Research Institute, Sweden
  • Institute for Ecology of Industrial Areas, Poland
Bibliografia
  • 1. Amorim, C.L., Moreira, I.S., Maia, A.S., Tiritan, M.E. & Castro, P.M.L. (2014). Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11, Applied Microbiology and Biotechnology, 98, 3, pp. 3181-3190, DOI: 10.1007/s00253-013-5333-8.
  • 2. Baginska, E., Haiss, A. & Kummerer, K. (2015). Biodegradation screening of chemicals in an artificial matrix simulating the water-sediment interface, Chemosphere, 119, pp. 1240-1246, DOI: 10.1016/j.chemosphere.2014.09.103.
  • 3. Bouki, C., Venieri, D. & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants, Ecotoxicology and Environmental Safety, 91, pp. 1-9, DOI: 10.1016/j.ecoenv.2013.01.016.
  • 4. Dai, Y., Li, N.N., Zhao, Q. & Xie, S.G. (2015). Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and influence on microbial community structure, Biodegradation, 26, pp. 161-170, DOI: 10.1007/ s10532-015-9724-7.
  • 5. Doruk Aracagök, Y., Göker, H. & Cihangir, N. (2018). Biodegradation of diclofenac with fungal strains, Archives of Environmental Protection, 44, 1, pp. 55-62, DOI: 10.24425/118181.
  • 6. Dorival-Garcia, N., Zafra-Gomez, A., Navalon, A., Gonzalez, J. & Vilchez, J.L. (2013). Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors, Science of the Total Environment, 442, pp. 317-328, DOI: 10.1007/s10532-015-9724-7.
  • 7. Girardi, C., Greve, J., Lamshoft, M., Fetzer, I., Miltner, A., Schaffer, A. & Kastner, M. (2011). Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities, Journal of Hazardous Materials, 198, pp. 22-30, DOI: 10.1016/j.hazmat.2011.10.004.
  • 8. Guo, Q.W., Zhang, J.X., Wan, R. & Xie, S.G. (2014). Impacts of carbon sources on simazine biodegradation by Arthrobacter strain SD3-25 in liquid culture and soil microcosm, International Biodeterioration & Biodegradation, 89, pp. 1-6, DOI: 10.1016/j. ibiod.2013.12.018.
  • 9. Halling-Sorensen, B., Lutzhoft, H.H., Andersen, H.R. & Ingerslev, F. (2000). Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin, Journal of Antimicrobial Chemotherapy, 46, pp. 53-58, DOI: 10.1093/jac/46.suppl_1.53.
  • 10. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F. & Petrovic, M. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment, Water Research, 45, pp. 1165-1176, DOI: 10.1016/j.watres.2010.11.010.
  • 11. Jia, A., Wan, Y., Xiao, Y. & Hu, J. (2012). Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, Water Research, 46, 2, pp. 387-394, DOI: 10.1016/j.watres.2011.10.055.
  • 12. Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Molecular Biology and Evolution, 33, 7, pp. 1870-1874, DOI: 10.1093/molbev/msw054.
  • 13. Kummerer, K., Al-Ahmad, A. & Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere, 40, pp. 701-710, DOI: 10.1016/S0045- 6535(99)00439-7.
  • 14. Li, B. & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process, Environmental Science & Technology, 44, pp. 3468-3473, DOI: 10.1021/es903490h.
  • 15. Liao, X., Li, B., Zou, R., Dai, Y., Xie, S. & Yuan, B. (2016). Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure, Environmental Science and Pollution Research, 23, 8, pp. 7911-7918, DOI: 10.1007/s11356-016-6054-1.
  • 16. Liu, Z.G., Sun, P.Z., Pavlostathis, S.G., Zhou, X.F. & Zhang, Y.L. (2013a). Adsorption, inhibition, and biotransformation of ciprofloxacin under aerobic conditions, Bioresource Technology, 144, pp. 644-651, DOI: 10.1016/j.biortech.2013.07.031.
  • 17. Liu, Z.G., Sun, P.Z., Pavlostathis, S.G., Zhou, X.F. & Zhang, Y.L. (2013b). Inhibitory effects and biotransformation potential of ciprofloxacin under anoxic/anaerobic conditions, Bioresource Technology, 150, pp. 28-35, DOI: 10.1016/j. biortech.2013.09.125.
  • 18. Marcelino, B.P., Andrade, L.N.M., Starling, M.C.V., Amorim, C.C., Barbosa, M.L.T., Lopes, R.P., Reis, B.G. & Leao, M.M.D. (2016). Evaluation of aerobic and anaerobic biodegradability and toxicity assessment of real pharmaceutical wastewater from industrial production of antibiotics, Brazilian Journal of Chemical Engineering, 33, pp. 445-452, DOI: 10.1590/0104- 6632.20160333s20150136.
  • 19. Miralles-Cuevas, S., Audino, F., Oller, I., Sánchez-Moreno, R., Pérez, J.A.S. & Malato, S. (2014). Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)-EDDS complex and ozonation), Separation and Purification Technology, 122, pp. 515-522, DOI: 10.1016/j.seppur.2013.12.006.
  • 20. Nzila, A., Sankara, S., Al-Momani, M. & Musa, M. (2018). Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: phenanthrene and anthracene, Archives of Environmental Protection, 44, 2, pp. 43-52, DOI: 10.24425/119693.
  • 21. Peng, H., Pan, B., Wu, M., Liu, Y., Zhang, D. & Xing, B. (2012). Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity and structure-controlled process, Journal of Hazardous Materials, 30, pp. 89-96, DOI: 10.1016/j.jhazmat.2012.06.058.
  • 22. Persoone, G., Marsalek, B., Blinova, I., Torokne, A., Zarina, D., Manusadzianas, L., Nałęcz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L. & Kolar, B. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters, Environmental Toxicology, 18, pp. 395-402, DOI: 10.1002/tox.10141.
  • 23. Petrie, B.R., Barden, B. & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Research, 72, pp. 3-27, DOI: 10.1016/j.watres.2014.08.053.
  • 24. Rodríguez, D.C., Londoño, Y.A. & Peñuela, G.A. (2017). Application of batch tests to assess antibiotic loads in anaerobic processes, Water Science & Technology, 10, pp. 2412-2421, DOI: 10.2166/ wst.2017.127.
  • 25. Thuy, H.T.T. & Loan, T.T.C. (2014). Degradation of selected pharmaceuticals in coastal wetland water and sediments, Water, Air, & Soil Pollution, 225, p. 1940, DOI: 10.1007/s11270-014-1940-y.
  • 26. Vazquez-Roig, P., Segarra, R., Blasco, C., Andreu, V. & Pico, Y (2010). Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry, Journal of Chromatography A, 1217, pp. 2471-2483, DOI: 10.1016/j.chroma.2009.11.033.
  • 27. Verlicchi, P., Al Aukidy, M. & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment, Science of the Total Environment, 429, pp. 123-155, DOI: 10.1016/j.scitotenv.2012.04.028.
  • 28. Wang, J. & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review, Archives of Environmental Protection, 182, pp. 620-640, DOI: 10.1016/j.jenvman.2016.07.049.
  • 29. Wu, C.X., Spongberg, A.L. & Witter, J.D. (2009). Sorption and biodegradation of selected antibiotics in biosolids, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 44, pp. 454-461, DOI: 10.1080/10934520902719779.
  • 30. Zhang, W., Xu, D., Niu, Z., Yin, K., Liu, P. & Chen, L. (2012). Isolation and characterization of Pseudomonas sp. DX7 capable of degrading sulfadoxine, Biodegradation, 23, pp. 431-439, DOI: 10.1007/s10532-011-9522-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f8d154d-e606-41d5-a2ed-1c98b14d3513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.