PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared transmission in aperiodic structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The analysis of the electromagnetic wave transmission having a wave length near infrared propagating in multilayer structures made of materials GaP and CaF2. Analyzed was the influence of periodicity distribution of layers in the material properties and the presence of photonic forbidden gap for selected wavelengths of the electromagnetic wave. Design/methodology/approach: Maps transmission, which was performed by the analysis were obtained using a matrix method. Was investigated wave propagation wavelength range of infrared radiation in periodic binary multilayers and aperiodic Severin and Thue-Morse superlattices. Findings: It has been shown the structure of the transmission band depending on the type of polarization of the multilayer system. Properties of Thue-Morse superlattices were similar to binary superlattices but differed from the behavior of electromagnetic waves in aperiodic Severin superlattices. Research limitations/implications: The simulation was not considered the impact of losses in the material for propagating electromagnetic wave. Practical implications: Multilayer materials, which have photonic band gap, can be used as filters for electromagnetic radiation can improve the performance of night vision or electromagnetic waves multiplexers. Originality/value: Transmission properties of multilayers were examined in visible light but not for infrared light.
Słowa kluczowe
Rocznik
Strony
213--218
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] M. Born, E. Wolf, Principles of optics, Pergamon Press, London, 1968.
  • [2] P. Yeh, Optical waves in layered media, John Wiley and Sons, New York, 1988.
  • [3] L.M. Briechowski, Wołny w słoistych sriedach, Publishing house Nauka, Moskwa, 1973. [4] A. Yariv, P. Yeh, Optical waves in crystals. propagation and control of laser radiation, John Wiley and Sons, New York, 1984.
  • [5] A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247 (2005) 247-256.
  • [6] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.
  • [7] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58 (1987) 2059-2062.
  • [8] E. Yablonovitch, Photonic crystals, light semiconductors, The World of Science 126/2 (2002) 46-53 (in Polish).
  • [9] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals. molding the flow of light, Princeton University Press, Singapore, 1995.
  • [10] S.G. Johnson, J.D. Joannopoulos, Photonic crystals. The road from theory to practice, Kluwer Academic Publishers, Boston, 2002.
  • [11] D.J. Lockwood, L. Pavesi, Silicon photonics, Applied Physics vol. 94, Springer-Verlag, Heidelberg, 2004.
  • [12] K. Sakoda, Optical properties of photonic crystals, Springer- Verlag, Berlin, 2001.
  • [13] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic crystal fibers, Kluwer Academic Publishers, Boston, 2003.
  • [14] D.S. Shechmtan, I. Blench, D. Gratias, J.W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53 (1984) 1951-1953.
  • [15] D. Levine, P.J. Steinhardt, Quasicrystals: A new class of ordered structures, Physical Review Letters 53 (1984) 2477-2480
  • [16] D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Physical Review B 34 (1986) 596-616.
  • [17] P.J. Steinhardt, S. Ostlund, The Physics of Quasicrystals,World Scientific, Singapore, 1987.
  • [18] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on Progress in Physics 54 (1991) 1373-1425.
  • [19] D.P. DiVincenzo, P.J. Steinhardt, Quasicrystals: The state of the art, World Scientific, Singapore, 1991.
  • [20]S.J. Poon, Electronic properties of quasicrystals. An experimental review, Advances in Physics 41 (1992) 303.
  • [21]Ch. Hu, R. Wang, D.H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [22]L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14 (1970) 61-65.
  • [23]A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports 357 (2002) 1-111.
  • [24]M. Gluck, A.R. Kolovsky, H.J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Reports 366 (2002) 103-182.
  • [25]E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Reports 376 (2003) 225-337.
  • [26]E. Abe, Y. Yan, S.J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 3 (2004) 759-767.
  • [27]X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physical Review B 70 (2004) 94202-94206.
  • [28]L. Jacak, P. Hawrylak, A.Wójs, Quantum Dots, Springer-Verlag, Berlin Heidelberg New York, 1998.
  • [29]H. S. Nalwa, Nanostructured materials and nanotechnology, Academic Press, New York, 2002.
  • [30]M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [31]Z.L. Wang, Y. Liu, Z. Zhang, Handbook of nanophase and nanostructured materials vol. 1, Synthesis, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [32]M. Jurczyk, J. Jakubowicz, Ceramic nanomaterials, Publishing house Poznań University of Technology, Poznań, 2004 (in Polish).
  • [33]V.G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami, Uspekhi Fizicheskikh Nauk 92 (1968) 517-529.
  • [34]D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with negative permeability and permittivity, Physical Review Letters 84 (2000) 4184-4187. [35]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Subwavelength resolution in a two-dimensional photonic-crystal-based superlens, Physical Review Letters 91 (2003) 207401.
  • [36]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423 (2003) 604-605.
  • [37]K.Yu. Bliokh, Yu.P. Bliokh, What are the left-handed media and what is interesting about them, avaliable in EBP arXiv:physics/0408135, 2004.
  • [38]P. Markos, C.M. Soukoulis, Left-handed materials, avaliable in EBP arXiv:condmat/0212136, 2002.
  • [39]A.L. Pokrovsky, A.L. Efros, Sign of refractive index and group velocity in left-handed media, Solid State Communications 124 (2002) 283-287.
  • [40]C.M. Krowne, Y. Zhang, Physics of negative refraction and negative index materials, Springer, 2007.
  • [41]S.A. Ramakrishna, T.M Grzegorczyk, Physics and applications of negative refractive index materials, SPIE Press and CRC Press, 2009.
  • [42]A. Klauzer-Kruszyna, Propagation of polarized light in selected aperiodic superstructures, PhD thesis, Wrocław, 2005 (in Polish).
  • [43]S. Garus, M. Duś-Sitek, E. Zyzik, Effect of iron dopant on superlattice FexNi (1-x) / Cu transmission properties, New Technologies and Achievements in Metallurgy and Materials Engineering. XII International Scientific Conference. Chapter 2, Częstochowa, 2011 (in Polish).
  • [44]S. Garus, J. Garus, K. Gruszka, Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja, Anna Kawałek. Chapter 2, Publishing house WIPMiFS Częstochowa University of Technologies (2012) 768-771 (in Polish).
  • [45]M. Severin, M. Dulea, R. Riklund, Periodic and quasiperiodic wave function in a class of one-dimensional quasicrystals: an analytical treatment, Journal of Physics: Condensed Matter 1 (1989) 8851-8858.
  • [46]F. Axel, J.P. Allouche, M. Kleman, M. Mendes-France, J. Peyriere, Finite automata and zero temperature quasicrystal ising chain, Journal of Physique Colloque 47 (1986) C3-64. [47]R. Riklund, M. Severin, Y. Liu, The Thue-Morse aperiodic crystal, a link between the fibonacci quasicrystal and the preiodic crystal, International Journal of Modern Physics B 1/1 (1987).
  • [48]Z. Cheng, R. Savit, R. Merlin, Structure and electronic properties of Thue-Morse lattices, Physical Review B 37 (1988) 4375.
  • [49]F. Axel, J. Peyriere, Spectrum and extended states in a harmonic chain with controlled disorder: effects of the Thue-Morse symmetry, Journal of Statistical Physics 57 (1989) 1013-1047.
  • [50]M. Kolar, K. Ali, F. Nori, Generalized Thue-Morse chains and their physical properties, Physical Review B43 (1991) 1034-1047.
  • [51]J.X. Zhong, J.R. Yan, J.Q. You, Electronic properties of the generalized Thue-Morse lattices: a dynamical-map approach, Journal of Physics: Condensed Matter 3 (1991) 6293-6298.
  • [52]C.S. Ryu, G.Y. Oh, M.H. Lee, Electronic properties of a tight-binding and a Kronig-Penney model of the Thue-Morse chain, Physical Review B48 (1993) 132-141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f8c9708-30b9-4332-a7f6-8e1dfd3c5069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.