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Abstract 

The aim of this work is an analysis of contact pressure between crack surfaces and  its  influence on effective elastic 

properties of materials with randomly distributed cracks. The finite element method (FEM) and the boundary element 

methods (BEM) are  applied to the numerical analysis of materials, and the results are compared. Three numerical results 

are presented. The accuracy of contact pressure obtained by numerical solutions is  verified for a single inclined crack in 

an infinite plate subjected to compression by  comparison with an analytical solution. The influence of angle between 

cracks and  directions of compressive loading on contact pressure for a branched crack in  a  rectangular plate is studied. 

The effective Young moduli and Poisson ratios for  a  rectangular plate with randomly distributed cracks are computed. 

The plate contains intersecting cracks which are in contact when the plate is subjected to tension or compression. 
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1. INTRODUCTION 

Fracture mechanics is a field of science that is 

becoming increasingly important. Structures must 

withstand different types of loads and expectations 

for a constantly extending product life it is very im-

portant to predict the initiation and propagation of 

cracks. Studies on simple models such as plates al-

low for predicting crack behaviour. 

After loading a cracked material, the crack sur-

faces can touch each other. The crack contact affects 

the stress distribution, in particular stress intensity 

factors (SIF), and  the  overall elastic properties of 

the material (Nemat-Nasser & Hori, 1999). 

Branched or intersecting cracks can contact even 

when the material is subjected to tension. The pur-

pose of this work was to analyse contact forces of 

crack surfaces and their influence on elastic effective 

properties. 

Usually, the contact area and the distribution of 

contact forces are not known. Due  to  the  com-

plexity of the problem, computational incremental 

and iterative procedures are  applied. Lee (1996) 

analysed plates with internal and edge cracks sub-

jected to  compressive and bending loadings using 

the dual boundary element method. The influence of 

crack size, angle and the coefficient of friction on 

SIF was studied. Tuhkuri (1997) used the  same 

approach to analyse plates with a straight crack and 

a radial crack emanating from  a  circular hole in an 

infinite plate. Phan et al. (2003) used the symmetric-

Galerkin boundary element method to compute SIF 

of a single straight crack, a two-wing crack and  a  

T-crack in unbounded domains under compression. 

Sevostianov et. al (2011) studied the influence of the 

microstructure of the sintered metal fibers on elastic 

properties using  analytical methods. The effect of 

relative volume of pores, pore shapes and relative 

length of crack branches, which depend on the tem-

perature of sintering, was analysed. 
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Fedeliński (2011) computed by the dual bounda-

ry element method effective elastic properties and 

SIF for representative volume elements (RVE) with 

randomly distributed cracks. The cracks having the 

same length, randomly distributed, parallel or ran-

domly oriented were considered. The influence of 

density of cracks on the effective Young moduli, the  

effective Poisson ratios and SIF was presented. 

Fedeliński (2017, 2019b) considered sintered metal 

fibers with voids and branched cracks grooving from 

their centers. The RVE containing large number of 

regularly distributed branched cracks were investi-

gated. The  influence of void shapes and dimensions 

of the crack branches on SIF and elastic properties 

were studied. Fedeliński (2019a, 2019b) presented 

the analysis of plates with  cracks subjected to com-

pressive static loadings. The numerical examples of 

a single inclined crack in an infinite plate, a 

branched crack in a rectangular plate and multiple 

parallel inclined cracks in a square plate were pre-

sented. Contact forces, stress intensity factors and  

effective elastic properties were computed. An influ-

ence of direction of loading and  orientation of 

cracks on stresses and overall elastic properties was 

studied. 

The original contribution of this work is a com-

parison of the FEM and BEM solutions of  crack 

contact problems, an analysis of contact forces for 

branched cracks and its influence on effective elastic 

properties.  

2. NUMERICAL IMPLEMENTATION OF 

THE FEM AND BEM FOR CRACK 

CLUSURE 

The plates with cracks are analysed by the finite 

element method and the dual approach of  the 

boundary elements method. 

The software Ansys 18.2 is used in the finite el-

ement analysis. The following contact parameters in 

Ansys 18.2 code are used: contact class - surface to 

surface, contact type - frictionless, formula - normal 

Lagrange and penetration and opening - close to 

zero (Dill, 2011). In the FEM analysis eight-node 

quadrilateral elements are applied. 

The BEM requires discretization of external 

boundaries of plates and boundaries of cracks (Ali-

abadi, 2002). Three-node line elements are applied 

to analyse two-dimensional problems. The variations 

of boundary coordinates, displacements and trac-

tions are interpolated using quadratic shape func-

tions and nodal values. The relations between 

boundary displacements and tractions are expressed 

by the displacement and traction boundary integral 

equations (Portela & Aliabadi, 1992). Direct solu-

tions are displacements and tractions for boundary 

nodes. The standard BEM computer code was de-

veloped to take into account contact of crack surfac-

es (Fedeliński, 2019a). Contact forces are deter-

mined using the iterative procedure. In  each itera-

tion, the relative displacements of pairs of nodes on 

opposite crack surfaces in  the normal and tangential 

directions are computed. When the opening is nega-

tive, the crack closure occurs. In this case, the pair of 

nodes is subjected to small normal tractions, which 

reduce overlapping of crack edges. The iterative 

process is repeated until the crack opening for the 

whole crack is positive. The increase of the crack 

tractions is constant and  is  assumed to be a fraction 

of the applied external traction. 

In the considered numerical examples friction-

less contact of crack surfaces is assumed. 

3. NUMERICAL EXAMPLES 

Three numerical examples are shown in this 

chapter. Each example presents a comparison of the 

FEM and BEM solutions. The aim of the first exam-

ple – an infinite plate with a single inclined crack - is 

to verify the accuracy of the FEM analysis of contact 

forces by comparison with an analytical solution. 

The second example - a rectangular plate with a 

branched crack - shows the comparison of contact 

forces and an influence of angle between branches 

and  direction of compressive loading on contact 

forces. The third example - a rectangular plate with 

randomly distributed straight cracks - presents the 

effective elastic properties computed for different 

types of loading. 

The material of plates is linear-elastic, homoge-

nous and isotropic, the plates are in plane strain con-

ditions and the Poisson ratio is v = 0.3. 

3.1. Plate with a single inclined crack 

An infinite plate with a single straight inclined 

crack is analysed. The crack is inclined at  an angle 

α to the x1 axis and the following angles are consid-

ered α = 30°, 45° or 60°. The  length of the crack is 

2a and the external dimensions of the plate are 2w 

and 2h (w = h). In  order to model the infinite plate 

very large dimensions of the plate are assumed w/a = 

50. The dimensions of the plate and the crack are 
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shown in figure 1. The plate is loaded with  bounda-

ry tractions p1 in the horizontal direction, as shown 

in figure 2. The edge of  the  crack is divided into 

200 finite elements or 10 boundary elements.  

 

Fig. 1. Plate with a single inclined crack – dimensions. 

 

Fig. 2. Plate with a single inclined crack – traction boundary 
conditions. 

The normal pressure tn in the centre of the crack 

computed by the FEM is compared with  the BEM 

results (Fedeliński, 2019a) and the analytical solu-

tion (Melville, 1977) given by the equation: 

2
1sinnt p   (1) 

The comparison of the normalised normal con-

tact pressures tn/p1 is presented in table 1. The results 

obtained by the analytical, the BEM and the FEM 

solutions are very similar. This  simple numerical 

example demonstrates very high accuracy of numer-

ical methods for  the analysis of cracks in compres-

sion. 

Table 1. Data used for material description in numerical modeling. 

angle α 
normalised normal pressure on the crack tn/p1 

analytical BEM FEM 

30° 0.250 0.250 0.250 

45° 0.500 0.500 0.499 

60° 0.750 0.750 0.749 

 

3.2. Plate with a single branched crack 

A rectangular plate contains a single branched 

crack in the centre, as shown in figure 3. The exter-

nal dimensions of the plate are 2w and 2h (h/w = 

0.8). The length of horizontal branch is a and the 

lengths of two symmetrically slanted branches is b. 

The length of crack branches is equal (a = b) and 

a/w = 0.5. The angle between the branches is 2α and 

three different angles are considered α = 30°, 45° or 

60°. Two types of boundary conditions are  studied: 

the compressive tractions p1 are applied in the hori-

zontal direction or  the  tractions p2 are applied in the 

vertical direction along the parallel edges of plate, as  

shown in figure 4. 

 

Fig. 3. Plate with a single branched crack – dimensions. 

a)  

b)  

Fig. 4. Plate with a single branched crack - traction boundary 
conditions:a) loading in x1 direction, b) loading in x2 direction. 
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The aim of this numerical example was to verify 

accuracy of the FEM solutions by  comparison with 

the BEM solutions (Fedeliński, 2019a). The edge of 

crack branch was divided into 200 finite elements or 

10 boundary elements.  

Figure 5 shows the distributions of normalized 

contact tractions tn/p along the edges for  α = 45° 

obtained by the FEM and BEM. 

a)  

b)  

Fig. 5. Normalized contact tractions tn/p for the plate with a 

single branched crack obtained by the FEM and BEM: a) 

tractions in x1 direction, b) tractions in x2 direction. 

For the horizontal loading the contact occurs on-

ly along the inclined branches, and  the  larges val-

ues of tractions are near the centre of crack. For the 

vertical loading the  contact occurs along the whole 

horizontal branch and partially along the inclined 

branches. The larges tractions are along the horizon-

tal branch near the centre of crack and  the  value of 

normalized tractions near the crack tip tends to 1. 

The agreement of  the  FEM and BEM solutions is 

very good. 

Figure 6 shows the normalized contact tractions 

tn/p for different values of angle α obtained by the 

FEM. The largest tractions for the horizontal loading 

p1 are for the angle α = 60
o
. For the vertical loading 

the angle α has small influence on traction distribu-

tion along the horizontal branch. The largest trac-

tions along the inclined branches are for the angle α 

= 30
o
. 

a)  

b)  

Fig. 6. Normalized contact tractions tn/p for the plate with a 

single branched crack for different values of angle α: a) 
tractions in x1 direction, b) tractions in x2 direction. 

3.3. Plate with randomly distributed cracks. 

A square plate of width 2w and height 2h (w = h) 

contains 20 randomly distributed straight cracks of 

length 2a (a/w = 1/5), as shown in figure 7. The 

plate contains 3 pairs of intersecting cracks. The 

edges of the cracks are divided into 200 finite ele-

ments or 8 boundary elements. 

In order to determine the effective elastic proper-

ties of cracked plate, the normal tractions p1 are ap-

plied in the x1 direction and the tractions p2 are ap-

plied in the x2 direction, as shown in figure 8. The 

extension and compression of the plate are consid-

ered. The plates are  supported at the edges along the 

horizontal and vertical lines of symmetry. In the case 

of  extension or compression, contact of crack edges 

of intersecting cracks occurs. 

The displacements of plate boundaries calculated 

by the FEM and BEM are used to  determine aver-

age strains and effective Young’s moduli and Pois-

son’s ratios. The properties are normalized with 

respect to the Young modulus E0 and the Poisson 

ratio v0 of material without cracks. Three different 
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cases were considered: extension without contact, 

extension with contact and compression with contact 

of crack surfaces. The results obtained for the plate 

loaded in the x1 direction are shown in table 2 and 

for the loading in the x2 direction in table 3. The 

initial and deformed cracked plates loaded in the x1 

direction, analysed by the BEM for three considered 

cases are shown in figure 9. 

 

Fig. 7. Plate with randomly distributed cracks - dimensions. 

a)  

b)  

Fig. 8. Plate with randomly distributed cracks – traction 

boundary conditions: a) tractions in x1 direction, b) tractions in 
x2 direction. 

 

Table 2. Effective elastic properties for the plate with randomly distributed cracks for three different types of loading in the x1 direction. 

method effective property 
extension 

without contact 

extension 

with contact 

compression 

with contact 

FEM E1/E0 0.425 0.435 0.829 

BEM E1/E0 0.428 0.434 0.824 

FEM ν12/ν0 0.477 0.401 1.396 

BEM ν12/ν0 0.469 0.398 1.398 

Table 3. Effective elastic properties for the plate with randomly distributed cracks for three different types of loading in the x2 direction. 

method effective property 
extension 

without contact 

extension 

with contact 

compression 

with contact 

FEM E2/E1 0.601 0.635 0.827 

BEM E2/E1 0.600 0.625 0.822 

FEM ν21/ν0 0.675 0.460 1.472 

BEM ν21/ν0 0.661 0.454 1.476 
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a)  

b)  

c)  

Fig. 8. Plates with randomly distributed cracks for three 

different types of loading in direction x1 analysed by the BEM 

(initial shape-dashed line, deformed shape-continuous line): a) 

extension without contact, b) extension with contact, c) 
compression with contact. 

Contact of crack surfaces slightly increases the 

Young moduli and significantly decreases the Pois-

son ratios for the plates subjected to tension. The 

Young moduli and Poisson ratios of the considered 

plate subjected to compression are much larger than 

the plate subjected to tension. 

Effective properties of the material obtained by 

the FEM and BEM are in very good agreement. 

The density of cracks can be described by the 

following parameter (Kachanov, 1992): 

2

1

1 n

i

i

a
A




   (2) 

where: A - the area of the RVE, ai - the half-length 

of the crack, n - the number of cracks. 

In the considered case ai = a, n = 20 and ρ = 0.2. 

The relative Young modulus of the cracked material 

can be estimated analytically (Kachanov, 1992) us-

ing:  

 the non-interacting method: 

0

1

1

E

E 



 (3) 

 the self-consistent method: 

0

1
E

E
   (4) 

 the differential method: 

0

E
e

E

  (5) 

The relative Young modulus E/E0 for the con-

sidered density of cracks calculated using the non-

interacting method is 0.614, the self-consistent 

method – 0.372 and the differential method – 0.533. 

The average relative Young modulus E/E0 for the 

horizontal and vertical loading computed by the 

FEM is 0.513 and by the BEM is 0.514. These re-

sults agree well with the estimation by the differen-

tial method.  

4. CONCLUSIONS 

Rectangular plates with a single straight crack, a 

branched crack and with randomly distributed 

straight cracks are considered in the paper. The in-

fluence of orientation of cracks on  distribution of 

contact forces and the influence of crack contact on 

the effective Young moduli and Poisson ratios are 

investigated. The materials are analysed by the finite 

and  boundary element method. The results obtained 

by the FEM and BEM are similar. The preparation 

of input data for BEM models is much simpler than 

for FEM models of materials, because only the outer 

boundaries of plates and cracks are divided into el-

ements. They agree very well with the analytical 

solution for the single straight crack. The direction 

of  loading has a significant influence on distribution 

of contact forces for the branched crack. The angle 

between branches influences only contact forces 

along slanted branches. The  Young moduli and 

Poisson ratios for the considered material with ran-

domly distributed cracks in  compression are larger 

than in tension.  
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METODA ELEMENTÓW SKOŃCZONYCH I  

BRZEGOWYCH W ANALIZIE ZAMYKANIA 

PĘKNIĘĆ 

Streszczenie 

Celem pracy jest analiza sił kontaktowych między powierzch-

niami pęknięć i ich wpływu na zastępcze własności sprężyste 

materiałów z losowo rozmieszczonymi pęknięciami. Zastoso-

wano metodę elementów skończonych (MES) i metodę elemen-

tów brzegowych (MEB) w analizie numerycznej materiałów i 

porównano wyniki obliczeń. Przedstawiono trzy przykłady 

numeryczne. Zbadano dokładność sił kontaktowych wyznaczo-

nych metodami numerycznymi przez porównanie z rozwiąza-

niem analitycznym dla pojedynczego ukośnego pęknięcia w 

ściskanej nieskończonej tarczy. Badano wpływ kąta między 

pęknięciami i  kierunków obciążenia ściskającego na siły kon-

taktowe rozgałęzionego pęknięcia w tarczy prostokątnej. Obli-

czono zastępcze moduły Younga i współczynniki Poissona 

prostokątnej tarczy z losowo rozmieszczonymi pęknięciami. 

Tarcza zawierała przecinające się pęknięcia, które stykają się, 

gdy tarcza jest rozciągana lub ściskana. 

Received: February 22, 2020. 

Received in a revised form: April 4, 2020. 

Accepted: April 17, 2020. 


