PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic and optical properties of airborne dust particles nearby coal-fifired power plants in Upper Silesia, Poland: a mineralogical petrographical and chemical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal mining and exploitation pose certain challenges in terms of environmental management. The objective of this research is the study of airborne dust from Knurow region, Southern Poland, aiming identify the level and the features of anthropogenic particles, mostly in the form of fly ash. Two samples collected from a domestic gutter system were analysed regarding their mineralogical, chemical and petrographical features, emphasizing the magnetic fraction and the carbonized organic particles. The airborne dust contains 22 wt.% of fossil and fresh organic matter, whereas the major mineralogical phase is magnetite. The magnetic fraction (up to 3 wt.%) appears in the form of spheres of simple or complex surface structure, while their average size is 12.7 and 15.8 μm in the studied samples. Lithogenic magnetite is totally absent. The magnetic spheres consist mainly of Fe, whereas Al, Si, Mg and Mn participate in minor amounts. Unburnt coal particles, along with chars, sooty and coke particles, were identified, accounting for 80 vol.% on a mineral matter-free basis, with fresh residues of immature organic matter accounting for the remaining 20 vol.%. Anthropogenic activities in the study area point out a significant environmental footprint to the urban site of the Knurow region.
Rocznik
Strony
320--332
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
  • Aristotle University of Thessaloniki, School of Geology, Greece
  • University of Patras, Department of Geology, Greece
  • Institute of Energy and Fuel Processing Technology, Zabrze, Poland
  • Aristotle University of Thessaloniki, School of Geology, Greece
  • Aristotle University of Thessaloniki, School of Geology, Greece
  • University of Patras, Department of Geology, Greece
Bibliografia
  • [1] Rúzickováa J, Kucbela M, Raclavska H, Svédová B, Raclavsky K, Juchelkova D. Comparison of organic com-pounds in char and soot from the combustion of biomass in boilers of various emission classes. J Environ Manag 2019; 236:769e83. https://doi.org/10.1016/j.jenvman.2019.02.038.
  • [2] Strzalkowska E. Morphology, Chemical and mineralogical composition of magnetic fraction of coal fly ash. Int J Coal Geol 2021;240:103746. https://doi.org/10.1016/j.coal.2021.103746.
  • [3] Wojtaszek M, Wasielewski R, Kalaitzidis S. Organic petro-graphical features of fly ashes originating from coal and coal-SRF co-combustion. Minerals 2021;11(2):128. https://doi.org/ 10.3390/min11020128.
  • [4] Chrysakopoulou C, Vogiatzis D, Drakoulis A, Papadopoulou L, Kantiranis N. Heavy metal load in airborne magnetic particles from anthropogenic activities in a contaminated area in Northern Greece and their environ-mental impact. Environ Sci Proc 2023;26:212. https://doi.org/ 10.3390/environsciproc2023026212.
  • [5] Magiera T, Gárka-Kostrubiec B, Szumiata T, Bucko MS. Technogenic magnetic particles in topsoil: characteristic fea-tures for different emission sources. Sci Total Environ 2023; 865:161186. https://doi.org/10.1016/j.scitotenv.2022.161186.
  • [6] Spiteri C, Kalinski V, Rosler W, Hoffmann V, Appel E, MAGPROX Team. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ Geol 2005;49:1e9. https://doi.org/10.1007/ s00254-005-1271-9.
  • [7] Ha J, Chae S, Chou KW, Tyliszczak T, Montiero PJM. Characterization of class F fly ash using STXM: identifying intraparticle heterogeneity at nanometer scale. J Nanomater 2016;2016:7. https://doi.org/10.1155/2016/8072518.
  • [8] Eurostat Statistics Explained. Coal production and con-sumption up in 2022 [internet]. Eurostat; 2023. Retrieved from: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230622 -2#:~:text=The%20EU%20produced %20294%20million,lead%20as%20the%20main%20producer.
  • [9] Lu SG, Bai SQ, Xue QF. Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China. Geophys J 2007;171:568e80. https://doi.org/10.1111/j.1365-246X.2007.03545.x.
  • [10] Carrie J, Sanei H, Goodarzi F, Stern GA, Wang F. Charac-terization of organic matter in surface sediments of the Mackenzie River Basin, Canada. Int J Coal Geol 2009;77: 416e23. https://doi.org/10.1016/j.coal.2008.03.007.
  • [11] Siavalas G. The study of dispersed solid pollutants in soils and sediments in relation to the mineralogical characteristics of conventional fuels used for energy. Ph.D. Thesis. Uni-versity of Patras (in greek); 2013. p. 45e6.
  • [12] Siavalas G, Werner D, Karapanagioti HK, Bowler BFJ, Manning DAC, Christanis K. Comparison of methods for the characterization and quantification of carbon forms in estu-arine and marine sediments from coal mining regions. Org Geochem 2013;59:61e74. https://doi.org/10.1016/j.orggeo-chem.2013.03.007.
  • [13] Sazakli E, Siavalas G, Fidaki A, Christanis K, Karapanagioti HK, Leotsinidis M. Concentrations of persistent organic pollutants and organic matter character-istics as river sediment quality indices. Toxicol Environ Chem 2015;98(7):1e14. https://doi.org/10.1080/02772248.2015. 1124880.
  • [14] Suarez-Ruiz I, Perez Barreto AA, Tomillo P, Luis D, Amor C. Environmental impact of coal handling in the coastal area of Gijon (Northern Spain): a petrographic approach. Soc Org Petrol Newsletter 2018;35(3):12e5.
  • [15] Jie X, Rui S, Tamer IM, Shaozeng S, Zhuozhi W. Effect of char particle size on NO release during coal char combus-tion. Energy Fuels 2017;31(12):13406e15. https://doi.org/10. 1021/acs.energyfuels.7b02580.
  • [16] Masiello CA. New directions in black carbon organic geochemistry. Mar Chem 2004;92(1e4):201e13. https://doi. org/10.1016/j.marchem.2004.06.043.
  • [17] Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, KoEgel-Knabner I, Leeuw JW de, Littke R, Michaelis W, RullkoEtter J. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 2000;31:945e58. https:// doi.org/10.1016/S0146-6380(00)00096-6.
  • [18] Stanmore BR, Brilhac JF, Gilot P. The oxidation of soot: a re-view of experiments, mechanisms and models. Carbon 2001; 39:2247e68. https://doi.org/10.1016/S0008-6223(01)00109-9.
  • [19] Martinez-del-Rio J, Martinez-Bravo M. Urban Pollution and Emission Reduction. In: Leal Filho W, Azul A, Brandli L, Ozuyar P, Wall T, editors. Sustainable cities and commu-nities. ENUNSDG; 2019. p. 1e11. https://doi.org/10.1007/978-3-319-71061-7_30-1.
  • [20] Bourliva A, Papadopoulou L, Aidona E. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Sci Total Environ 2016;15(553):380e91. https://doi.org/10.1016/j.scitotenv.2016.02.149.
  • [21] Wilczynska-Michalik W, Michalik JM, Tokarz W, Gondek L, Zukrowski J, Michalik M. Magnetic fraction in atmospheric aerosols in Krakow (Poland). In: 3rd symposium air quality and health book of abstracts, Krakow, Poland; 2021.
  • [22] Glówny Urz^d Statystyczny Warszawa [internet]. Statistics Poland; 2023. Retrieved from, https://stat.gov.pl/.
  • [23] Malon A, Tyminski M. [internet]. Polish Geological Institute National Research Institute; 2023. Retrieved from, https:// geoportal.pgi.gov.pl/surowce/energetyczne/wegiel_ kamienny.
  • [24] Grimley DA, Lynn AC, Brown CW, Blair NE. Magnetic fly ash as a chronological marker in post-settlement alluvial and lacustrine sediment: examples from North Carolina and Il-linois. Minerals 2021;11(5):476. https://doi.org/10.3390/ min11050476.
  • [25] ASTM D3174, American Society for Testing and Materials (ASTM) D3174. Standard method for ash in the analysis sample of coal and coke from coal. In: Annual book of ASTM standards, gaseous fuels; coal and coke. vol. 5. Philadelphia, PA: ASTM; 2004. p. 322e6.
  • [26] ISO 7404-2, International Standard Organization (ISO) 74042. Methods for the petrographic analysis of bituminous coal and anthracite e Part 2: method for preparing coal sam-plesvol. 7. Geneva, Switzerland: International Organization for Standardization; 2009.
  • [27] ISO/DIS 7404-3, International Standard Organization (ISO) 7404-3. Methods for petrographic analysis-Part 3: method of determining maceral group composition. Geneva, Switzer-landvol. 7; 2009.
  • [28] ICCP. International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP System 1994). Fuel 1998;77(5):349e58. https://doi.org/10.1016/ S0016-2361(98)80024-0.
  • [29] ICCP. International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP System 1994). Fuel 2001;80(4):459e71. https://doi.org/10.1016/ S0016-2361(00)00102-2.
  • [30] Sykorová I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D. Classification of huminite e ICCP system 1994. Int J Coal Geol 2005;62:85e106. https://doi.org/10.1016/j.coal.2004. 06.006.
  • [31] Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardott BJ, Misz-Kennan M, Rodrigues S, Hentschel A, Hamor-Vido M, Crosdale P, Wagner N. Classification of liptinite e ICCP system 1994. Int J Coal Geol 2017;169:40e61. https://doi.org/10.1016/j.coal.2016.11.004.
  • [32] Misz-Kennan M, Kus J, Flores D, Avila C, Buçkun Z, Choudhury N, Christanis K, Joubert JP, Kalaitzidis S, Karayigit AI, Malecha M, Marques M, Martizzi P, O’Keefe JMK, Pickel W, Predeanu G, Pusz S, Ribeiro J, Rodrigues S, Singh AK, Suarez-Ruiz I, Sykorovó I, Wagner NJ, Zivotic D. Development of a petrographic clas-sification system for organic particles affected by self-heating in coal waste (An ICCP Classification System, Self-heating Working Group e Commission III). Int J Coal Geol 2020;220: 103411. https://doi.org/10.1016/j.coal.2020.103411.
  • [33] Suarez-Ruiz I, Valentim B, Borrego AG, Bouzinos A, Flores D, Kalaitzidis S, Malinconico ML, Marques M, Misz-Kennan M, Predeanu G, Montes JR, Rodrigues S, Siavalas G, Wagner N. Development of a petrographic classification of fly-ash components from coal combustion and co-combus-tion (An ICCP Classification System, Fly-Ash Working GroupeCommission III). Int J Coal Geol 2017;183:188e203. https://doi.org/10.1016/j.coal.2017.06.004.
  • [34] Lester E, Alvarez D, Borrego AG, Valentim B, Flores D, Clift DA, Rosenberg P, Kwiecinska B, Barranco R, Petersen HI, Mastalerz M, Milenkova KS. The procedure used to develop a coal char classification-Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. Int J Coal Geol 2010;81(4): 333e42. https://doi.org/10.1016/j.coal.2009.10.015.
  • [35] Pasieczna A, Konon A, Nad£onek W. Sources of anthropo-genic contamination of soil in the Upper Silesian Agglom-eration (southern Poland). Geol Q 2020;64(4):988e1003. https://doi.org/10.7306/gq.1564.
  • [36] Dudka S, Piotrowska M, Chlopecka A, WItek T. Trace metal contamination of soils and crop plants by the mining and smelting industry in Upper Silesia, South Poland. J Geochem Explor 1995;52:237e50. https://doi.org/10.1016/0375-6742(94) 00047-F.
  • [37] Cabala J, Krupa P, Misz-Kennan M. Heavy metals in mycorrhizal rhizospheres contaminated by ZnePb mining and smelting around olkusz in Southern Poland. Water Air Soil Pollut 2008;1(199):139e49. https://doi.org/10.1007/ s11270-008-9866-x.
  • [38] Bourliva A, Kantiranis N, Papadopoulou L, Aidona E, Christophoridis C, Kollias P, Evgenakis M, Fytianos K. Sea-sonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessalo-niki city, Greece: A one-year monitoring period. Sci Total Environ 2018;639:417e27. https://doi.org/10.1016/j.scitotenv. 2018.05.170.
  • [39] Kelepertzis E, Argyraki A, Botsou F, Aidona E, Szabó A, Szabó C. Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Environ Pollut 2019;245:909e20. https://doi.org/10.1016/j.envpol.2018. 11.072.
  • [40] Chrysakopoulou C, Vogiatzis D, Drakoulis A, Papadopoulou L, Kantiranis N. Morphological characteristics of magnetic particles and their environmental impact: the case of Sarigiol basin (Greece). E3S Web Conf ICED2023 2023; 436:08007. https://doi.org/10.1051/e3sconf/202343608007.
  • [41] Kapicka A, Jordanova N, Petrovsky E, Ustjak S. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J Appl Geophys 2001;48:93e102. https://doi. org/10.1016/S0926-9851(01)00082-9.
  • [42] Shuya L, Bo Z, Di W, Zhiwei L, Sheng-Qi C, Xiang D, Xingfu T, Jianmin C, Qing L. Magnetic particles uninten-tionally emitted from anthropogenic sources: iron and steel plants. Environ Sci Technol 2021;8(4):95e300. https://doi.org/ 10.1021/acs.estlett.1c00164.
  • [43] Hycnar J, Kochanski B, Tora B. Manufacture and properties of magnetite dust from by-products of carbon combustion. Inz Mat J Polish Mineral Eng Soc 2021:192e6.
  • [44] Wilczynska-Michalik W, Michalik JM, Kapusta C, Michalik M. Airborne magnetic technoparticles in soils as a record of anthropocene. Atmoshpere 2020;11(44):11e5. https://doi.org/10.3390/atmos11010044.
  • [45] Adamczyk Z, Komorek J, Bialecka B, Nowak J, Klupa A. Assessment of the potential of polish fly ashes as a source of rare earth elements. Ore Geol Rev 2020;124:103638. https:// doi.org/10.1016/j.oregeorev.2020.103638.
  • [46] Sokol EF, Kalugin VM, Nignatulina EN, Volkova NI, Frenkel AE, Maksimowa NV. Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions. Fuel 2002;81:867e76. https://doi.org/ 10.1016/S0016-2361(02)00005-4.
  • [47] Wawer M. Identification of technogenic magnetic particles and forms of occurrence of potentially toxic elements present in fly ashes and soil. Minerals 2020;10:1066. https://doi.org/ 10.3390/min10121066.
  • [48] Blaha U, Sapkota B, Appel E, Stanjek H, Rosler W. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos Environ 2008;42:8359e70. https://doi.org/10.1016/j.atmosenv.2008.07.051.008.07.051.
  • [49] Czech T. Morphology and chemical composition of magnetic particles separated from coal fly ash. Materials 2022;15(2): 528. https://doi.org/10.3390/ma15020528.
  • [50] Yuan Q, Liu Z, Zheng K, Ma C. Civil engineering materials from theory to practice. 1st ed. Elsevier; 2021. p. 59e204.
  • [51] Juda-Rezler K, Kowalczyk D. Size distribution and trace elements contents of coal fly ash from pulverized boilers. Pol J Environ Stud 2023;22:25e40.
  • [52] Weather Spark [internet]. Weather spark. Retrieved from: https://weathersparkcom/y/83870/Average-Weather-in-Knurow-Poland#Figures-WindDirection; 2023.
  • [53] Wechsler B, Lindsley D, Prewitt C. Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4) MT100-1350. Am Mineral 1984;69:654e770.
  • [54] Sciubidlo A, Majchrzak-Kuc^ba I, Nowak W. Characterization of fly ash from polish coal-fired CHP plants for NO2. Pol J Environ Stud 2019;28(6):4403e16. https://doi.org/10.15244/ pjoes/94997.
  • [55] Parzentny HR. Spatial macroscale variability of the role of mineral matter in concentrating some trace elements in bituminous coal in a coal basin-a case study from the upper silesian coal basin in Poland. Minerals 2020;10(5):422. https:// doi.org/10.3390/min10050422.
  • [56] Vasconcelos L. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition). Int J Coal Geol 1999;40(1):27e58. https://doi.org/10.1016/S0166-5162(98) 00056-1.
  • [57] Zeb B, Ditta A, Alam K, Sorooshian A, Din BU, Iqbal R, Rahman MHU, Raza A, Alwahibi MS, Elshikh MS. Wintertime investigation of PM10 concentrations, sources, and relationship with different meteorological parameters. Sci Rep 2024;14:154. https://doi.org/10.1038/s41598-023-49714-w.
  • [58] Akar G, Polat M, Galecki G, Ipekoglu U. Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants. Fuel Process Tech 2012;104: 50e6.
  • [59] Matzenbacher CA, Garcia ALH, Dos Santos MS, Nicolau CC, Premoli S, Correa DS, Telles de Souza C, Niekraszewicz L, Ferraz Dias J, Delgado TV, Kalkreuth W, Grivicich I, Da Silva J. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J Hazard Mater 2017;324:781e8.
  • [60] Zhang J, Chen Y, Namani A, Elshaer M, Jiang Z, Shi H, Tang X, Wang XJ. Comparative transcriptome analysis reveals Dusp1 as a critical regulator of inflammatory response to fly ash particle exposure in mouse. Ecotoxicol Environ Saf 2020;190:110116. https://doi.org/10.1016/j.ecoenv. 2019.110116.
  • [61] Panda D, Mandal L, Barik J. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. Int J Phytoremediation 2020;22(11):1195e203. https://doi.org/10.1080/15226514.2020. 1754757.
  • [62] Amster E. Public health impact of coal-fired power plants: a critical systematic review of the epidemiological literature. Int J Environ Health Res 2021;31(5):558e80. https://doi.org/ 10.1080/09603123.2019.1674256.
  • [63] Zhang CH, Sears L, Myers JV, Brock GN, Sears CG, Zierold KM. Proximity to coal-fired power plants and neurobehavioral symptoms in children. J Expo Sci Environ Epidemiol 2022;32(1):124e34. https://doi.org/10.1038/s41370-021-00369-7.
  • [64] Schilling CJ, Tams IP, Schilling RS, Nevitt A, Rossiter CE, Wilkinson B. A survey into the respiratory effects of prolonged exposure to pulverised fuel ash. Br J Ind Med 1988;45: 810e7. https://doi.org/10.1136/oem.45.12.810.
  • [65] Fomenko EV, Anshits NN, Solovyov LA, Knyazev YV, Semenov SV, Bayukov OA, Anshits AG. Magnetic fractions of PM2.5, PM2.5e10, and PM10 from coal fly ash as environmental pollutants. ACS Omega 2021;6(30):20076e85. https://doi.org/10.1021/acsomega.1c03187.
  • [66] Lawson MJ, Prytherch ZC, Jones TP, Adams RA, BeruBe KA. Iron-rich magnetic coal fly ash particles induce apoptosis in human bronchial cells. Appl Sci 2020;10:8368. https://doi.org/ 10.3390/app10238368.
  • [67] Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SJ, Tager I, Expert Panel on Population and Prevention Science of the American Heart Association. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 2004;109(21):2655e71. https://doi.org/10.1161/01. CIR.0000128587.30041.C8.
  • [68] Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 2012;8(4):577e602. https://doi.org/10. 2217/fca.12.43.
  • [69] Costa-Beber LC, Goettems-Fiorin PB, Borges Dos Santos J, Friske PT, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. Environ Sci Pollut Res 2021;28: 23395e404. https://doi.org/10.1007/s11356-021-12350-w.
  • [70] Kamath R, Udayar SE, Jagadish G, Prabhakaran P, Madhipatla KK, Research Team. Assessment of health status and impact of pollution from thermal power plant on health of population and environment around the plant in Udupi District, Karnataka Indian. J Public Health 2022;66(2):91e7. https://doi.org/10.4103/ijph.IJPH_1422_20.
  • [71] Kravchenko J, Lyerly HK. The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carol Med J 2018;79(5): 289e300. https://doi.org/10.18043/ncm.79.5.289.
  • [72] Nabrdalik M, Santora M. Smothered by smog, Polish cities rank among Europe’s dirtiest. The New York Times 2018. Retrieved from, https://www.nytimes.com/2018/04/22/ world/europe/poland-pollution.html. [Accessed 22 June 2020].
  • [73] Alarm Smogowy Polski. Smogowi liderzy e ranking polskich miast z najbardziej zanieczyszczonym powietrzem. Polski Alarm Smogowy; 2019. Retrieved from: https:// polskialarmsmogowy.pl/polski-alarm-smogowy/ aktualnosci/szczegoly,smogowi-liderzy%2D%2Dranking-polskich-miast-z-najbardziej-zanieczyszczonym-powietrzem,1301.htm.
  • [74] Łukaszewski Z. Węgiel tak, smog nie e świadomość i odpowiedzialność. In: Bialy W, Badura H, Czerwinska-Lubszczyk A, editors. Systemy wspomagania produkcji gor-nićtwo-perspećtwy i zagrozenia. Wegiel, tania ćzysta energia i miejsća praćy. 1st Editionvol. 7; 2018. p. 484e96.
  • [75] Resolution No. V/36/1/2017 Ućhwała Sejmiku nr V/36/1/2017 z dnia 2017-04-07 - Biuletyn Informaćji Publićznej Samorządu Województwa Śląskiego (slaskie.pl).
  • [76] Krumal K, Mikuska P, Horók J, Hopan F, Krpec K. Comparison of emissions of gaseous and partićulate pollutants from the ćombustion of biomass and ćoal in modern and old-type boilers used for residental heating. Chemosphere 2019;229:51e9. https://doi.org/10.1016/j.ćhemosphere. 2019.04.137.
  • [77] Krpec K, Horók J, Laciok V, Hopan F, Kubes P, Lamberg H, Jokiniemi J, Tomsejova S. Impact of boiler type, heat output and combusted fuel on emission factors for gaseous and particulate pollutants. Energy Fuels 2016;30(10):8448e56. https://doi.org/10.1021/acs.energyfuels.6b00850.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f7d77dd-8664-4f14-9e01-4f86c6fe86ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.