PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by pulsed laser heating

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of heat conduction with fractional orders. The obtained general solution is applied to a specific problem of a medium, semi-infinite solid considered to be made of a homogeneous thermoelastic material. The bounding plane surface of the medium is being subjected to a non-Gaussian laser pulse. The medium is assumed initially quiescent and Laplace transforms techniques will be used to obtain the general solution for any set of boundary conditions. The inverse of the Laplace transforms are computed numerically using a method based on Fourier’s expansion techniques. The theories of coupled thermoelasticity and of generalized thermoelasticity with one relaxation time follow as limit cases. Some comparisons have been shown in figures to estimate the effects of the fractional order, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields.
Rocznik
Strony
53--73
Opis fizyczny
Bibliogr. 32 poz. rys.
Twórcy
  • Department of Mathematics Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics Faculty of Science, Kafrelsheikh University Kafr El-Sheikh 33516, Egypt
  • Department of Mathematics Faculty of Science, Mansoura University Mansoura 35516, Egypt
  • Department of Mathematics College of Science and Arts
Bibliografia
  • 1. M.A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 27, 240–253, 1956.
  • 2. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15, 299–307, 1967.
  • 3. A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity, 2, 1–7, 1972.
  • 4. D.Y. Tzou, A unified field theory for heat conduction from macro- to micro-scale, ASME Journal of Heat Transfer, 117, 8–16, 1995.
  • 5. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society, 432, 171–194, 1991.
  • 6. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 253–264, 1992.
  • 7. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 189–209, 1993.
  • 8. P.J. Chen, M.E. Gurtin, On a theory of heat conduction involving two temperatures, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 19, 614–627, 1968.
  • 9. P.J. Chen, W.O. Williams, A note on non-simple heat conduction, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 19, 969–970, 1968.
  • 10. P.J. Chen, M.E. Gurtin, W.O. Williams, On the thermodynamics of non-simple elastic materials with two temperatures, Zeitschriftfuer für angewandte Mathematik und Physik (ZAMP), 20, 107–112, 1969.
  • 11. B.A. Boley, I.S. Tolins, Transient coupled thermoelastic boundary value problems in the half-space, ASME Journal of Applied Mechanics, 29, 637–646, 1962.
  • 12. W.E. Warren, P.J. Chen, Wave propagation in the two temperature theory of thermoelasticity, Acta Mechanica, 16, 21–33, 1973.
  • 13. H.M. Youssef, Dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, Applied Mathematics and Mechanics (English edition), 26, 470–475, 2005.
  • 14. A.M. Zenkour, A.E. Abouelregal, The effect of two temperatures on a functionally graded nanobeam induced by a sinusoidal pulse heating, Structural Engineering and Mechanics, 51, 199–214, 2014.
  • 15. A.M. Zenkour, A.E. Abouelregal, Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory, European Journal of Computational Mechanics, 23, 1–14, 2014.
  • 16. I.A. Abbas, A.M. Zenkour, Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times, Journal of Computational and Theoretical Nanoscience, 11, 1–7, 2014.
  • 17. A.M. Zenkour, A.E. Abouelregal, State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 65, 149–164, 2014.
  • 18. Y. Sun, D. Fang, M. Saka, A.K. Soh, Laser-induced vibrations of micro-beams under different boundary conditions, International Journal of Solids and Structures, 45, 1993–2013, 2008.
  • 19. B.S. Yilbas, M. Sami, S.Z. Shuja, Laser-induced thermal stresses on steel surface, Optics and Lasers in Engineering, 30, 25–37, 1998.
  • 20. D.Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior, Series in Chemical and Mechanical Engineering, Taylor & Francis, Washington, DC, 1997.
  • 21. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophysical Journal of the Royal Astronomical Society, 13, 529–539,1967.
  • 22. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure and Applied Geophysics, 91, 134–147, 1971.
  • 23. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress, Journal of Thermal Stresses, 28, 83–102, 2005.
  • 24. Y.Z. Povstenko, Thermoelasticity that uses fractional heat conduction equation, Journal of Mathematical Sciences, 162, 296–305, 2009.
  • 25. X. Jiang, M. Xu, The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems, Physica A, 389, 3368–3374, 2010.
  • 26. A.E. Abouelregal, A.M. Zenkour, Effect of fractional thermoelasticity on a twodimensional problem of a mode I crack in a rotating fibre-reinforced thermoelastic medium, Chinese Physics B, 22, 22, 10 (108102 – 8 pp.), 2013.
  • 27. I.A. Abbas, A.M. Zenkour, Semi-analytical and numerical solution of fractional order generalized thermoelastic in a semi-infinite medium, Journal of Computational and Theoretical Nanoscience, 11, 1592–1596, 2014.
  • 28. K.S. Miller, B. Ross, An Introduction to the Fractional Integrals and Derivatives, Theory and Applications, John Wiley and Sons Inc., New York, 1993.
  • 29. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • 30. M.A. Ezzat, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B: Physics of Condensed Matter, 406, 30–35, 2011.
  • 31. G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio, Computers & Mathematics with Applications, 59, 1142–1164, 2010.
  • 32. G. Honig, U. Hirdes, A method for the numerical inversion of the Laplace transform, Journal of Computational and Applied Mathematics, 10, 113–132, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f7cd2fd-5f6d-4b37-9ccb-378c83dbb6c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.