PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Fault Diagnosis of Highway Bi-LSTM Based on Attention Mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deep groove ball bearings are widely used in rotary machinery. Accurate for bearing faults diagnosis is essential for equipment maintenance. For common depth learning methods, the feature extraction of inverse time domain signal direction and the attention to key features are usually ignored. Based on the long short term memory(LSTM) network, this study proposes an attention-based highway bidirectional long short term memory (AHBi-LSTM) network for fault diagnosis based on the raw vibration signal. By increasing the Attention mechanism and Highway, the ability of the network to extract features is increased. The bidirectional LSTM network simultaneously extracts the raw vibration signal in positive and inverse time-domains to better extract the fault features. Six deep groove ball bearings with different health conditions were used to validate the AHBi-LSTM method in an experiment. The results showed that the accuracy of the proposed method for bearing fault diagnosis was over 98%, which was 8.66% higher than that of the LSTM model. The AHBi-LSTM model is also better than other relevant models for bearing fault diagnosis.
Słowa kluczowe
Rocznik
Strony
art. no. 162937
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
autor
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
autor
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
autor
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
Bibliografia
  • 1. Barcelos A S, Cardoso A J M. Current-based bearing fault diagnosis using deep learning algorithms[J]. Energies, 2021, 14(9): 2509, https://doi.org/10.3390/en14092509.
  • 2. Chadha G S, Panambilly A, Schwung A, et al. Bidirectional deep recurrent neural networks for process fault classification[J]. ISA transactions, 2020, 106: 330-342, https://doi.org/10.1016/j.isatra.2020.07.011.
  • 3. Chen Y, Peng G, Zhu Z, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919, https://doi.org/10.1016/ j.asoc.2019.105919.
  • 4. Chikhaoui B, Ruer P, Vallières É F. A Deep Learning Method for Automatic Visual Attention Detection in Older Drivers[C]//International Conference on Smart Homes and Health Telematics. Springer, Cham, 2019: 49-60. https://doi.org/10.1007/978-3-030-32785-9_5
  • 5. Duan Z, Wu T, Guo S, et al. Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 803-819, https://doi.org/10.1007/s00170-017-1474-8.
  • 6. Fang S, Zijie W. Rolling bearing fault diagnosis based on wavelet packet and RBF neural network[C]//2007 Chinese Control Conference. IEEE, 2007: 451-455. https://doi.org/10.1109/CHICC.2006.4346979
  • 7. Gryllias K C, Antoniadis I A. A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments[J]. Engineering Applications of Artificial Intelligence, 2012, 25(2): 326-344, https://doi.org/10.1016/j.engappai.2011.09.010.
  • 8. He M, He D. Deep learning based approach for bearing fault diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 3057-3065, https://doi.org/10.1109/TIA.2017.2661250.
  • 9. Huang W, Cheng J, Yang Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92, https://doi.org/10.1016/j.neucom.2019.05.052.
  • 10. Kaplan K, Kaya Y, Kuncan M, et al. An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis[J]. Applied Soft Computing, 2020, 87: 106019, https://doi.org/10.1016/j.asoc.2019.106019.
  • 11. Kolar D, Lisjak D, Pająk M, et al. Intelligent fault diagnosis of rotary machinery by convolutional neural network with automatic hyper-parameters tuning using Bayesian optimization[J]. Sensors, 2021, 21(7): 2411, https://doi.org/10.3390/s21072411.
  • 12. Li H, Liu T, Wu X, et al. An optimized VMD method and its applications in bearing fault diagnosis[J]. Measurement, 2020, 166: 108185, https://doi.org/10.1016/j.measurement.2020.108185.
  • 13. Li X, Li J, Zhao C, et al. Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection[J]. Mechanical Systems and Signal Processing, 2020, 142: 106740, https://doi.org/10.1016/j.ymssp.2020.106740.
  • 14. Mao X T, Zhang F, Wang G, et al. Semi-Random Subspace with Bi-GRU: Fusing Statistical and Deep Representation Features for Bearing Fault Diagnosis[J]. Measurement, 2020: 108603, https://doi.org/10.1016/j.measurement.2020.108603.
  • 15. Mnih V, Heess N, Graves A. Recurrent models of visual attention[C]//Advances in neural information processing systems. 2014: 2204-2212.
  • 16. Parmar M, Devi V S. Neural Machine Translation with Recurrent Highway Networks[C]//International Conference on Mining Intelligence and Knowledge Exploration. Springer, Cham, 2018: 299-308. https://doi.org/10.1007/978-3-030-05918-7_27
  • 17. Plakias S, Boutalis Y S. Fault detection and identification of rolling element bearings with Attentive Dense CNN[J]. Neurocomputing, 2020, 405: 208-217, https://doi.org/10.1016/j.neucom.2020.04.143.
  • 18. Singh J, Azamfar M, Ainapure A, et al. Deep learning-based cross-domain adaptation for gearbox fault diagnosis under variable speed conditions[J]. Measurement Science and Technology, 2020, 31(5): 055601, https://doi.org/10.1088/1361-6501/ab64aa.
  • 19. Singleton R K, Strangas E G, Aviyente S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Transactions on Industrial Electronics, 2014, 62(3): 1781-1790, https://doi.org/10.1109/ TIE.2014.2336616.
  • 20. Srivastava R K, Greff K, Schmidhuber J. Highway networks[J]. arXiv preprint arXiv:1505.00387, 2015, https://doi.org/10.48550/arXiv.1505.00387.
  • 21. Tao J, Liu Y, Yang D. Bearing fault diagnosis based on deep belief network and multisensor information fusion[J]. Shock and Vibration, 2016, 2016, https://doi.org/10.1155/2016/9306205.
  • 22. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. 2017: 5998-6008.
  • 23. Wang H, Xu J, Yan R, et al. Intelligent bearing fault diagnosis using multi-head attention-based CNN[J]. Procedia Manufacturing, 2020, 49: 112-118, https://doi.org/10.1016/j.promfg.2020.07.005.
  • 24. Wang J, Mo Z, Zhang H, et al. A deep learning method for bearing fault diagnosis based on time-frequency image[J]. IEEE Access, 2019, 7: 42373-42383, https://doi.org/10.1109/ACCESS.2019.2907131.
  • 25. Wang X, Mao D, Xiaodong L I. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2020: 108518, https://doi.org/10.1016/j.measurement.2020.108518.
  • 26. Wang X, Takaki S, Yamagishi J. Investigating very deep highway networks for parametric speech synthesis[J]. Speech Communication, 2018, 96: 1-9, https://doi.org/10.1016/j.specom.2017.11.002.
  • 27. Wu J, Tang T, Chen M, et al. A study on adaptation lightweight architecture based deep learning models for bearing fault diagnosis under varying working conditions[J]. Expert Systems with Applications, 2020, 160: 113710, https://doi.org/10.1016/j.eswa.2020.113710.
  • 28. Xu G, Hou D, Qi H, et al. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life[J]. Mechanical Systems and Signal Processing, 2020, 146: 107050.
  • 29. Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International conference on machine learning. 2015: 2048-2057.
  • 30. Xueyi L I, Jialin L I, Yongzhi Q U, et al. Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 418-426, https://doi.org/10.1016/j.cja.2019.04.018.
  • 31. Yin Z, Li G, Du C, et al. An adaptive speed estimation method based on a strong tracking extended Kalman filter with a least-square algorithm for induction motors[J]. Journal of Power Electronics, 2017, 17(1): 149-160, https://doi.org/10.6113/JPE.2017.17.1.149.
  • 32. Zia T, Razzaq S. Residual recurrent highway networks for learning deep sequence prediction models[J]. Journal of Grid Computing, 2020, 18(1): 169-176, https://doi.org/10.1007/s10723-018-9444-4.
  • 33. Zia T. Hierarchical recurrent highway networks[J]. Pattern Recognition Letters, 2019, 119: 71-76. https://doi.org/10.1016/j.patrec.2018.06.023
  • 34. Zilly J G, Srivastava R K, Koutnık J, et al. Recurrent highway networks[C]//International Conference on Machine Learning. PMLR, 2017: 4189-4198.
  • 35. Zuo L, Zhang L, Zhang Z H, et al. A spiking neural network-based approach to bearing fault diagnosis[J]. Journal of Manufacturing Systems, 2020, https://doi.org/10.1016/j.jmsy.2020.07.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f7ad843-48c9-430c-9e78-66a9da433250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.